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Angstroms (Å). (Fitness evaluation on randomly generated con-

formations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22

6.23. Fitness vs. RMS Dihedral Angle difference. (kcal/mol vs. Radi-

ans) (Fitness evaluation on randomly generated conformations) 6-22

A.1. List of linear structure formula for Amino Acids. [30] . . . . . A-1

B.1. Conformation/Chemical formulation for Amino Acids. . . . . B-1

C.1. Alanine Ramachandran Worksheet. . . . . . . . . . . . . . . . C-1

C.2. Arginine Ramachandran Worksheet. . . . . . . . . . . . . . . C-2

C.3. Asparagine Ramachandran Worksheet. . . . . . . . . . . . . . C-3

C.4. Aspartic acid Ramachandran Worksheet. . . . . . . . . . . . C-4

C.5. Cysteine Ramachandran Worksheet. . . . . . . . . . . . . . . C-5

C.6. Glutamine Ramachandran Worksheet. . . . . . . . . . . . . . C-6

C.7. Glutamic Ramachandran Worksheet. . . . . . . . . . . . . . . C-7

C.8. Glycine Ramachandran Worksheet. . . . . . . . . . . . . . . . C-8

C.9. Histidine Ramachandran Worksheet. . . . . . . . . . . . . . . C-9

C.10. Isoleucine Ramachandran Worksheet. . . . . . . . . . . . . . C-10

C.11. Leucine Ramachandran Worksheet. . . . . . . . . . . . . . . . C-11

C.12. Lysine Ramachandran Worksheet. . . . . . . . . . . . . . . . C-12

C.13. Methionine Ramachandran Worksheet. . . . . . . . . . . . . . C-13

xvi



Figure Page

C.14. Phenylalanine Ramachandran Worksheet. . . . . . . . . . . . C-14

C.15. Proline Ramachandran Worksheet. . . . . . . . . . . . . . . . C-15

C.16. Serine Ramachandran Worksheet. . . . . . . . . . . . . . . . C-16

C.17. Threonine Ramachandran Worksheet. . . . . . . . . . . . . . C-17

C.18. Tryptophan Ramachandran Worksheet. . . . . . . . . . . . . C-18

C.19. Tyrosine Ramachandran Worksheet. . . . . . . . . . . . . . . C-19

C.20. Valine Ramachandran Worksheet. . . . . . . . . . . . . . . . C-20

D.1. An illustration of the Pile of PCs network configuration. This

configuration is best described as two separate crossbar switches;

furthermore, it was uses as such during experimental runs in this

Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-2

D.2. An illustration of how to cut the crossbar switches when calcu-

lating bisection width. . . . . . . . . . . . . . . . . . . . . . . D-3

D.3. An illustration of how to cut the myrnet’s crossbar switches

when calculating bisection width. Assuming that only one wire

is cut to disconnect several processors from any one processor D-4

D.4. An illustration of a SP P3 omega network configuration. . . . D-5

N.1. MET’s Amino Acid and Atom number identification figure. . N-1

N.2. PLOY’s Amino Acid and Atom number identification figure. . N-2

xvii



List of Tables
Table Page

2.1. Comparison Of Common Energy Functions used in solving the

PSP problem [96] [87] [20] . . . . . . . . . . . . . . . . . . . . 2-20

3.1. Classification of methodologies used in solving the PSP prob-

lem. For advantages and disadvantages see Sections 3.2, 3.3,

and 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

3.2. General algorithm for a Monte Carlo simulation. . . . . . . . 3-9

3.3. Complexity Estimates for the sGA. Where l is the length of

chromosome, n is the size of population, q is the group size for

a tournament selection and g is the number of generations. . 3-13

3.4. Complexity Estimates for the ssGA. Where l is the length of

chromosome, n is the size of population and g is the number of

generations of reproduction. . . . . . . . . . . . . . . . . . . 3-13

3.5. Complexity Estimates for the Original mGA [42] . . . . . . . 3-18

3.6. Complexity Estimates for the fmGA [42] . . . . . . . . . . . . 3-20

3.7. Pseudo code for DFS/BT Algorithm . . . . . . . . . . . . . . 3-32

3.8. Comparison between Deterministic algorithm and Stochastic

Algorithm applied to the PSP problem . . . . . . . . . . . . . 3-33

4.1. Pseudo code for evaluation of partial solutions. . . . . . . . 4-3

4.2. Competitive Template and Multiple Objective settings for the

fmGA. This Table is describe more thoroughly in Appendix E. 4-4

4.3. Pseudo code for tournament selection. . . . . . . . . . . . . 4-5

4.4. Secondary Structures useful in matching onto polypeptides struc-

tures. Note 1 and 2 are used for competitive template genera-

tion. [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

4.5. Pseudo code for finding and storing the best fitness. . . . . . 4-6

4.6. Pseudo code for rotating competitive template mechanism. . 4-7

xviii



Table Page

4.7. Pseudo code for evaluation of partial solutions. . . . . . . . 4-9

4.8. Pseudo code modifying the evaluation function when moving

from the single to multiple objective code. . . . . . . . . . . 4-15

4.9. Pseudo code for multiobjective tournament selection. . . . . 4-15

4.10. List of Ramachandran plot variations. . . . . . . . . . . . . . 4-16

5.1. Options for the fmGA . . . . . . . . . . . . . . . . . . . . . . 5-6

5.2. Parameters for design . . . . . . . . . . . . . . . . . . . . . . 5-7

5.3. Options for the fmGA . . . . . . . . . . . . . . . . . . . . . . 5-8

5.4. Input Schedule for the fmGA . . . . . . . . . . . . . . . . . . 5-9

5.5. System and Workload Parameters . . . . . . . . . . . . . . . 5-10

5.6. List of possible workload parameters along with their associated

search space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

6.1. Time Complexity of Energy Minimization Methods [32] . . . 6-9

6.2. Best Fitness Found . . . . . . . . . . . . . . . . . . . . . . . 6-17

6.3. RMS difference calculations for POLY. . . . . . . . . . . . . . 6-19

6.4. RMS difference calculations for MET. . . . . . . . . . . . . . 6-21

6.5. Angles found for MET at ∼ −38 kcal/mol. . . . . . . . . . . 6-23

6.6. Angles found for POLY at ∼ −170 kcal/mol. . . . . . . . . . 6-24

D.1. PPC cluster Specifications . . . . . . . . . . . . . . . . . . . . D-1

D.2. Summary of Pile of PCs (Switches combined, 2 Intel switches,

1 gigabit switch) . . . . . . . . . . . . . . . . . . . . . . . . . D-3

D.3. Specifications for the Cluster of Workstations . . . . . . . . . D-3

D.4. Summary of Throughput Potential for the Cluster of Worksta-

tions ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-4

D.5. Specifications for the Network of Workstations ) . . . . . . . D-5

D.6. SP P3 Specifications . . . . . . . . . . . . . . . . . . . . . . . D-5

D.7. Summary of SP P3 Throughput Potential . . . . . . . . . . . D-6

xix



Table Page

M.1. Computer Systems . . . . . . . . . . . . . . . . . . . . . . . . M-1

xx



List of Symbols
Symbol Page

Cα alpha-Carbon . . . . . . . . . . . . . . . . . . . . . . . . 1-3

N Nitrogen atom . . . . . . . . . . . . . . . . . . . . . . . 2-6

C Carbon atom . . . . . . . . . . . . . . . . . . . . . . . . 2-6

φ Dihedral angle made by the following atoms: Ni, Cα(i),

C(i), and N(i+1) . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11

ψ Dihedral angle made by the following atoms: Cα(i), C(i),

N(i+1), and Cα(i+1) . . . . . . . . . . . . . . . . . . . . . . . . 2-11

ω Dihedral angle made by the following atoms: C(i), N(i+1),

Cα(i+1), and C(i+1) . . . . . . . . . . . . . . . . . . . . . . . . 2-11

xxi



List of Abbreviations
Abbreviation Page

PSP Protein Structure Prediction . . . . . . . . . . . . . . . . xxv

NMR Nuclear Magnetic Resonance . . . . . . . . . . . . . . . xxv

AFIT Air Force Institute of Technology . . . . . . . . . . . . . xxv

GA Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . xxv

mga messy GA . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

fmGA fast messy GA . . . . . . . . . . . . . . . . . . . . . . . xxv

LLGA Linkage Learning GA . . . . . . . . . . . . . . . . . . . xxv

pfmGA parallel fast messy GA . . . . . . . . . . . . . . . . . . . xxv

MO MultiObjective . . . . . . . . . . . . . . . . . . . . . . . xxv

MOfmGA MutliObjective fast messy Genetic Algorithm . . . . . . xxv

BB Building Block . . . . . . . . . . . . . . . . . . . . . . . xxv

HGP Human Genome Project . . . . . . . . . . . . . . . . . . 1-1

NHGRI National Human Genome Research Institute . . . . . . . 1-1

NIH National Institute of Health . . . . . . . . . . . . . . . 1-1

DOE Department of Energy . . . . . . . . . . . . . . . . . . . 1-1

MET Met-Enkephlain . . . . . . . . . . . . . . . . . . . . . . . 1-2

POLY Polyalanine14 . . . . . . . . . . . . . . . . . . . . . . . . 1-2

N Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

C Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

H Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

mRNA messenger RNA . . . . . . . . . . . . . . . . . . . . . . . 1-4

tRNA transfer RNA . . . . . . . . . . . . . . . . . . . . . . . . 1-4

EAs Evolutionary Algorithms . . . . . . . . . . . . . . . . . . 1-7

ESs Evolutionary Strategies . . . . . . . . . . . . . . . . . . 1-7

GP Genetic Programming . . . . . . . . . . . . . . . . . . . 1-7

xxii



Abbreviation Page

EP Evolutionary Programming . . . . . . . . . . . . . . . . 1-7

SA Simulated Annealing . . . . . . . . . . . . . . . . . . . . 1-7

ANOVA Analysis of Variance . . . . . . . . . . . . . . . . . . . . 1-8

HPC high performance computing . . . . . . . . . . . . . . . . 1-9

AFRL Air Force Research Laboratory . . . . . . . . . . . . . . 1-9

WPAFB Wright Patterson Air Force Base . . . . . . . . . . . . . 1-9

DOD Department of Defense . . . . . . . . . . . . . . . . . . . 1-9

NP Nondeterministic Polynomial . . . . . . . . . . . . . . . 2-1

PDB protein data bank . . . . . . . . . . . . . . . . . . . . . 2-2

WRT with respect to . . . . . . . . . . . . . . . . . . . . . . . 2-15

OPLS Optimized Potentials Potentials for Liquid Simulations . 2-19

REM Random Energy Model . . . . . . . . . . . . . . . . . . . 2-19

LLNL Lawrence Livermore National Laboratory . . . . . . . . 3-2

IBM International Business Machines . . . . . . . . . . . . . . 3-5

flops floating operations per second . . . . . . . . . . . . . . . 3-5

MD Molecular dynamic . . . . . . . . . . . . . . . . . . . . 3-8

AMBER Assisted Model Building with Energy Refinement . . . . 3-11

ECEPP Empirical Conformational Energy Program for Peptides 3-11

sGA simple GA . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

PGA Parallel GA . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

ssGA Steady State GA . . . . . . . . . . . . . . . . . . . . . . 3-13

CT competitive template . . . . . . . . . . . . . . . . . . . . 3-18

PCI probabilistic complete initialization . . . . . . . . . . . . 3-22

BBF building block filtering . . . . . . . . . . . . . . . . . . . 3-22

DFS/BT Dept First Search with backtracking . . . . . . . . . . . 3-29

MPI message passing interface . . . . . . . . . . . . . . . . . 4-8

PDB Protein Data Bank . . . . . . . . . . . . . . . . . . . . . 4-10

xxiii



Abbreviation Page

VMD Visual Molecular Dynamics . . . . . . . . . . . . . . . . 4-10

MOMGA-II Multiobjective messy GA . . . . . . . . . . . . . . . . . 4-11

RAD radians . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16

PPCs Pile of PCs . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

COWs Cluster of Workstations . . . . . . . . . . . . . . . . . . 5-3

NOWs Networks of Workstations . . . . . . . . . . . . . . . . . 5-3

CUS Component Under Study . . . . . . . . . . . . . . . . . 5-4

SS Secondary Structure . . . . . . . . . . . . . . . . . . . . 5-6

H Test Kruskal-Wallis H Test . . . . . . . . . . . . . . . . . . . 5-15

df degrees of freedom . . . . . . . . . . . . . . . . . . . . . 5-15

CASP Critical Assessment of techniques for Protein Structure

Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

PHGA parallel hybrid GA . . . . . . . . . . . . . . . . . . . . . H-2

xxiv



AFIT/GE/ENG/02M-05

Abstract

Interest in discovering a methodology for solving the Protein Structure Pre-

diction (PSP) problem extends into many fields of study including biochemistry,

medicine, biology, and numerous engineering and science disciplines. Experimental

approaches, such as, x-ray crystallographic studies or solution Nuclear Magnetic Res-

onance (NMR) Spectroscopy, to mathematical modelling, such as minimum energy

models are used to solve this problem. Recently, Evolutionary Algorithm studies

at the Air Force Institute of Technology (AFIT) include the following: Simple GA,

messy GA (mga), fast messy GA (fmGA), and Linkage Learning GA (LLGA), as

approaches for potential protein energy minimization. Prepackaged software like

GENOCOP, GENESIS, and mGA are in use to facilitate experimentation of these

techniques. In addition to this software, a parallelized version of the fmGA, the so-

called parallel fast messy GA (pfmGA), is found to be “good” at finding semi-optimal

answers in a reasonable time. The aim of this work is to apply a (Multiobjective

MO) approach to solving this problem using a modified fast messy GA. By dividing

the CHARMm energy model into separate objectives, it should be possible to find

structural configurations of a protein that yield lower energy values and ultimately

more correct conformations.

In addition to the MO approach using the Mutliobjective fast messy Genetic

Algorithm (MOfmGA), various experiments are analyzed for effectiveness: newly

designed Ramachandran plots, varied Building Block (BB) cutoff sizes and multiple

competitive templates for both the fmGA and MOfmGA. Finally, an analysis of the

efficiency using the pfmGA constructed with a farming model is studied. As these

variants are expected to yield better results, so too is the first time implementation

of the per residue Ramachandran plots. Following the analysis of these experiments,

a comparison of previous methods is accomplished.

xxv



A MULTIOBJECTIVE APPROACH APPLIED TO THE

PROTEIN STRUCTURE PREDICTION PROBLEM

I. Introduction

The Protein Structure Prediction problem is a Grand Challenge problem [14,

61]. Solving this problem involves finding a methodology that can consistently and

correctly determine the geometrical conformation of any fully folded protein without

regard to the folding process. The problem is simply stated; however, one must

study the entire complexity of the problem to admire this Gordian knot1.

The motivation for having the ability to find the conformation of a fully folded

protein is in its application – a protein’s conformation represents a protein’s function

[94]. Upon determination of the function of a particular protein, researchers may

be able to engineer proteins for the making of particular products. Without the

knowledge of the function of these proteins, these products would be impossible to

construct. Interest in both the commercial and military realm is high in this area for

the production of these engineered products. The military can use specially hardened

material for body armor and plane shielding. Within the commercial world computer

companies are constantly looking for material that allows computers to store more

data and transfer communication signals faster. In addition to being able to engineer

better materials, this research also supports the Human Genome Project (HGP). The

HGP is supported by the National Human Genome Research Institute (NHGRI) at

the National Institute of Health (NIH) and Department of Energy (DOE) [82]. This

project’s goal is to identify the gene sequences for human DNA and to store this

1A knot tied by Gordius, king of Phrygia, held to be capable of being untied only by the future
ruler of Asia, and cut by Alexander the Great with his sword [25]
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information within a database for later analysis. Moreover, the DNA is used for the

process of building protein – once the structure of a protein is found, functionality

may be mapped back to DNA-gene holding patterns making it easier to find possible

weak or disease prone gene sequences within the DNA [86].

This Thesis effort studies the effectiveness and efficiency of a MOfmGA and

fmGA when used to solve the PSP problem. Consequently, this analysis evaluates

the conformations of two proteins: [Met]− Enkephlain (MET) and Polyalanine14

(POLY). See Appendix N for atom and amino acid identification for each of these

proteins. This introductory chapter discusses an overview of the problem, research

goals, assumptions, risks, sponsorship areas and the thesis layout.

1.1 Overview of PSP Problem

Because the PSP problem is a biochemistry problem mapped to a computer

for solving, it is necessary to describe the problem in both the biochemistry and

computer science domains. In addition, constraints must be drawn within these

domains to decompose the problem into a solvable entity. Following is a description

of the problem in both domains.

A phenotype is the physical representation of the genetic code (genotype) [3].

Problems in the real world (Phenotype) are almost never readily encoded into com-

puter terms. In fact, most problems have several levels of encoding before being

delivered into an algorithm for evaluation. For example, the PSP problem encoding

has different levels of encoding where the Phenotype representation is the actual

physical structure of the protein.
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Solving the PSP problem involves

finding a methodology that can consis-

tently and correctly determine the geo-

metrical conformation of any fully folded

protein without regard to the folding pro-

cess. We must now consider the folding

process. Proteins are constructed of a lin-

ear chain of amino acids. These amino

acids are the building blocks or the foun-

dation of every known protein. Every

amino acid has a standard sequence of

three atoms: one Nitrogen and two Car-

bons which make up the backbone of a

protein: Nitrogen (N) , Carbon (C), and

alpha-Carbon (Cα). In addition to these

standard atoms and bonded to the alpha-

carbon, is a residue (R) or side chain and

a single hydrogen (H) atom. Discussed

next is the generation process of a pro-

tein. It describes how the linear chain

of amino acids is selected and joined to-

gether to form the protein. As the protein

is created, the folding process begins.

Illustrated in Figure 1.1 is the pro-

cess of protein generation. The picture

depicts the linear sequence of amino acids

being generated by a ribosome. The en-

tire process beings within a cell when a

 

Figure 1.1 Description of the protein
creation and folding process
[15]
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copy2 of the DNA3 is made onto a deputy

molecule called the messenger RNA4 (mRNA).

This process of duplicating DNA is called

transcription. Transcription is accomplished

because the DNA carries the code for as-

sembling amino acids into proteins. Once

the mRNA has the properly transcribed

sequence of Codons, the mRNA attaches

itself to the ribosome and the translation

process begins. Translation is the pro-

cess where the production of the protein

occurs. The ribosome travels along the

Codons of the mRNA. As the ribosome

encounters each Codon, a transfer RNA

(tRNA) carries that particular amino acid

that matches the encoded Codon to the

ribosome.

This process aligns the amino acids

in the correct order allowing for the amino

acids to attach to one another making one

long linear link of amino acids – and ul-

timately building a single protein5.

2A complete copy of the DNA is not made;
moreover, only the information contained in the
sequence of bases in the sense strand of DNA is
impressed upon the mRNA

3DNA stands for deoxyribonucleic acid
4RNA stands for ribonnucleic acid
5DNA → RNA → protein

 
Figure 1.2 A few principles of protein

folding [15]
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As the protein is being generated, one amino acid at a time, it is also folding

to a particular conformation. There are virtually thousands of different shapes to

which a protein may conform [15]. Each conformation has a corresponding function,

as explained earlier.

There are some principles proteins follow when folding. Protein mostly form

into a conformation that acquires the lowest quantum mechanical energy or, in this

case, potential energy (See Figure 1.2). In this shape, a protein is in its most stable

condition; however, this is not to say that there are not proteins that fold to a higher

energy for functional reasons. On a higher level, amino acids can attract or repel

vicinity amino acids as necessary to reach this lower energy state; furthermore, on a

low lever, bonded atoms making up each amino acid do the same. Additionally, some

amino acids are attracted to water, hydrophilic6, while other’s are attracted to oil,

lipophilic7. This becomes important when the protein is folding because hydrophilic

amino acids become outer amino acids protecting lipophilic amino acids inside the

protein [44].

These native conformations are sought by researchers and, based on the physics

of the problem, the protein itself; however, the protein finds its own native conforma-

tion. This research concentrates on the final folded conformation of a protein. It does

not attempt to simulate the folding process where the amino acids and atoms twists,

push, pull, and convolve into a final stable structure which is different computational

problem.

1.2 Research Goals

The main goal of this research is to find improved methodologies for finding

good conformations of fully folded proteins. A multiobjective approach has not been

6Hydrophilic amino acids are known as water loving; whereas, hydrophobic amino acids are
water hating.

7Lipophilic amino acids are known as fat/oil loving; whereas, lipophobic amino acids are fat/oil
hating.
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applied to the PSP problem until now. In addition to the using this new approach,

there are several secondary goals of this investigation. These secondary goals include

experiments that observe variations to the fmGA. The first secondary goal is to

investigate how the integrate the newly found Ramachandran plots for each residue

type might effect the effectiveness of the algorithm. The second secondary goal is

to observe how multiple competitive templates effects algorithm effectiveness. The

third secondary goal is to study and validate increased efficiency on a farming model

for the pfmGA. The last secondary goal is to integrate a RMS feature into the fmGA

to give the researcher feedback on the RMS distance a found solution is from the

accepted true solution. Although RMS has been accomplished by other techniques

previously, this is the first time for integration into the algorithm software.

The approach taken for this research is the following:

Objective 1 Develop an improved understand of the PSP problem using new tech-

nology and supporting research.

1. Completely understand key problem domain concepts.

2. Known protein structure restrictions and boundaries.

3. Acknowledge previous methods of attack to solving the PSP problem to

be sure not to overlap already accomplished research.

Objective 2 Develop a working knowledge of parallel programming concepts for

application to the PSP problem domain and algorithm domain.

1. Know the difference between the types of parallel computer system archi-

tectures in the world and engage the ability to program on such systems.

These practices include parallel programming libraries and to be able to

identify the best library for a particular architecture.

2. Apply a new parallelization to the fmGA solving the PSP problem.
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Objective 3 Develop a working knowledge of Evolutionary Algorithms (EAs), Evo-

lutionary Strategies (ESs), GAs, Genetic Programming (GP), Evolutionary

Programming (EP), Simulated Annealing (SA), and MO approaches to prob-

lem domains.

1. Apply a GAs to the PSP problem; furthermore, fully understand the

fmGA and all its components.

2. Identify applications for EAs, ESs, GPs, SAs and EPs. Be able to relate

terms between each algorithm type and know good applications for each.

Objective 4 Apply biochemistry constraints and restrictions to the search space

for solving the PSP problem.

1. Ramachandran Plots have been applied to the PSP problem in previous

work. However, until now, the application has been applied generically to

dihedral angles for every type of residue. New technology has allowed for

a more precise method of assigning angular areas to dihedral angles ac-

cording to the residue type. These new Ramachandran Plots are referred

to as Plots per residue type.

2. In addition to the constraints of the Ramachandran Plots mentioned

above, there are angular values that may be assigned exclusively to dihe-

dral angles on know folding habits.

These constraints can be referred to as bounding box filters on angular

values making up the transformed dihedral angular conformation of a

protein.

Objective 5 Use visualization techniques to depict the sparseness of good solutions

in the fitness landscape.
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1. Provide a new fitness visualization technique to facilitate the sparseness

of good fitness values and good conformation within the dihedral angle

search area.

2. Provide a fitness visualization technique to help validate the fmGA search

technique. The plot should consist of an RMS and fitness axis. The plot

should reveal that as the fitness drops, the RMS difference should move

toward zero. If it does not, the model is not good.

Objective 6 Statistical analysis methods are used for determining the merit of

solutions found by an algorithm.

1. Statistical analysis of answers need to be applied for the validation that

found solutions are better or worse than previously found solutions.

2. The Kruskal-Wallis H test is used for the Analysis of Variance (ANOVA).

Objective 7 Finally, visualization techniques are used to present found conforma-

tions in a 3D graphical display of the protein.

1. Using a standard protein visualizer like VMD or RasMOL, the best solu-

tions found should be able to be viewed.

2. Visualization technique requires a file generation mechanism built in to

the running algorithm.

3. An explanation of a computational steering technique to help biochemist

guide the search algorithm with user input.

1.3 Assumptions

As with most research, there are assumptions8 needing to be stated upfront.

Often times there are research efforts building on past achievements as it is in this

8These assumptions listed here do not include all the constraints and assumptions needed to
encode the proteins into solvable problems. These biochemistry assumptions and constraints are
covered in Chapter 2.
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case. Much effort went in to ensuring the fmGA, pfmGA and MOfmGA were work-

ing properly during this research. The fitness function code written by a previous

student is also assumed correct. This function is based on the CHARMm version

22 software [11] ; however, it was ported from FORTRAN code to C in the early

90s. In addition to the fitness function being generated by previous students, so too

were the parameter files that are used to define MET and POLY for the evaluation

of energy by the CHARMm software. Finally, the assumption that the readers of

this thesis are of sufficient background in the computer science, biochemistry, high

performance computing (HPC), parallel computer architecture, GAs, and scientific

experimentation to understand the discussion.

Generally there are risks involved when making these assumptions. After a

problem is mapped to another domain, it changes and validity of the solutions

change. There is a risk that after mapping this unusually complex problem into

a computer solvable problem, the goodness of answers we could ever hope to find

might be limited by our mapping and constraints.

1.4 Sponsorship

This thesis is sponsored by the Materials Directorate, Air Force Research Lab-

oratory (AFRL) Wright Patterson Air Force Base (WPAFB), OH. This research lab

specializes in discovering new techniques for building specially engineered materials.

Material sought by the military normally focus on hardened type materials; however,

other research is as important. The Department of Defense (DOD] has a special in-

terest in optical limiting materials. These types of materials are in high demand for

protection against lasers targeting pilots’ eyes while they steer aircraft. Specially

engineered polymer dispersed liquid crystals that can act as a switchable light shut-

ter without disintegrating after laser contact is but only one type of material sought

by this highly technological group. Furthermore, the PSP problem stems from this

desire of biochemists to engineer materials such as the one mentioned above. A
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biochemist having the ability to know the function of a protein beforehand, can pro-

duce these specially engineered products faster and more precisely than any other

biochemist in the world. Finally, finding the solution could propel the United States

far beyond the competitors within this market.

1.5 Thesis Layout

This Thesis is organized in the following manner. Chapter 1, this chapter,

provides an overview of the PSP problem. Additionally, the objectives of the Thesis

investigation and approach are presented. Chapter 2 covers the background of past

PSP research including previous work here at AFIT and elsewhere. The detailed

PSP problem formulation can be found within this Chapter as well as the statistical

analysis method used in the results and analysis of Chapter 6. Chapters 3 and 4

describe the High to Low level design of the PSP problem being mapped to the

algorithm domain and then into code. Following the design chapters is Chapter 5

where the design of experiments is described. This chapter includes the justification

for various experiments and selected statistical analysis method. Additionally, this

chapter describes the process, number of tests, and presentation techniques. Chapter

6 discusses the results, analysis, and compare them to previous research. Conclusions

of this investigation can be found in Chapter 7.
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II. Problem Domain Models

The PSP problem is a Nondeterministic Polynomial-Time (NP) complete problem.

There is no known deterministic polynomial-time complexity algorithm available to

solve it [85]. For this reason, computer engineers use stochastic algorithms which

find semi-optimal solutions to the class of NP complete problems such as this one.

GAs are one such class of stochastic algorithm. In fact, much has been written on

solving the PSP problem using stochastic algorithms: [10, 70, 34, 33, 71, 72, 51, 52,

53, 54, 55, 69, 21, 76, 77, 18, 17, 16, 19].

Statement of PSP Problem

↪→ “Without regard to the folding process, determine the final resting confor-

mation of a fully folded protein.”

In generating conformations of fully folded proteins, bond angle bending and

stretching have been accounted for by two mainstream methods: fixed and variable

[39]. When assuming variable bond lengths and angles [36, 102], the problem domain

model becomes more difficult. Furthermore, using the variable method this model

is constrained to using Cartesian coordinates [2] for a formulation of a fit model.

The bond lengths, bond angles and dihedral angles all become variables making

the problem more difficult. As opposed to using the variable method, one can use

the fixed method where bond lengths and angles are fixed. This method relaxes

the number of variables to use only dihedral angles and the problem domain model

becomes simpler. The testing within this thesis investigation all use the fixed model.

This chapter covers the details of the problem domain. It begins with a dis-

cussion of the how a problem is decomposed into smaller parts and then describes

a symbolic and 0/1 formalized problem domain description for the PSP problem.

Following is a Phenotype to Genotype discussion and then a simple problem versus

the real-world problem instantiation. The simple problem to real world problem
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instantiation establishes the PSP problem’s search space. Moreover, a structural

point of view using a different mapping of the PSP problem is then covered. Next,

data structure decomposition and then a cartesian coordinate domain formulation

is discussed. This chapter concludes by a discussion of the energy fitness function,

CHARMm, which is used in this investigation.

2.1 Problem Domain

The problem domain decomposition and description is a general term for the

process of taking a large set of small connected regions (in this case a protein and

the atoms describing a protein) and grouping them together into a smaller number

of large zones (dihedral angles) [100]. All decompositions have to satisfy certain

hard constraints, but typically we are actually looking for an optimal decomposition

among the huge number of possible solutions. A simple way to quantify the quality

of a solution is to assign a score to each decomposition based on the value of some

fitness function (we use CHARMm energy model as the fitness function) . If we take

the convention of assigning low scores to good solutions, it is apparent that domain

decomposition can be viewed as a constrained function minimization problem – much

like a low energy search landscape.

2.1.1 Symbolic/Formalized Problem Domain Description. Every computer

representable problem can also be embodied with sets and sequences using set the-

ory notation. The following describes the input, transitional, and output domains

of the PSP problem. In addition, necessary operators are defined as well as the 0/1

formulation. The input and output domains are in protein data bank (PDB) file

format - including every atom in the protein. This format is the standard repre-

sentation of a protein’s 3D conformation. The transitional domain is a limited or

a constrained “subset” of the input domain. The reason for identifying these con-

straints is to seclude the variable angles from the fixed angles found within each

amino acid. Therefore, manipulation of these angles should be considerably easier
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yet, when evaluating the overall energy of the protein we may include the entire set

of atoms within the protein.

2.1.1.1 0/1 Formulation for the PSP problem. Let f(Pi) be the

fitness evaluation for a particular protein Pi. The fitness evaluation, Equation 2.1,

calculates all t terms of a given energy function Ei using Pi represented by an input

atom set x(A). According to our CHARMm model, t is 8; however, this may change

according to the energy function employed. Figure 2.8, starting with the third atom,

every atom has a 2D matrix of bit-degrees running from 0• to 1024• and 0• to 512•.

This is illustrated in Figure 2.1.

f(x) = E0(x(A)) + E1(x(A)) + . . . + Et(x(A)) (2.1)
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Figure 2.1 2D matrix representing the allowable angles for each set up 3 atoms
defined by Figure 2.8.

Let Ξ = [ξijk...n] be a matrix of n dimensionality. Embedded within each

subscript for ξ is the matrix shown in Figure 2.1. These matrices hold each and every

discretized configuration possible for the atoms within the protein Pi. Allocation of

values within matrices so that ξijk...n is 1 if angles ζ and ϑ are valid angles for the

atoms i, j, and k; otherwise ξijk...n is 0.

[!htb]ξijk...n =





1 : ζ and ϑ are valid

0 : ζ or ϑ are invalid
(2.2)

2-3



This is rather difficult to visualize because of the number of dimensions that

are involved with even the smallest of proteins; however, patterns form within the

matrices according to biologically invalid atom conformations. For example: in

Figure 2.2 the lower atom is being bent back toward top atom, ϑ having the bit-

degrees angle of one. It is known that atoms remain a certain distance apart from

one another [94]; therefore, a configuration with ϑ having a value of one bit-degrees

never occurs in the real world. The resulting conformation of protein i, C(Pi), is

infeasible and matrices are filled with zeros where these invalid angles are found.

The objective would then to be minimize Equation 2.3.

 

1024• 

ϑ•=1 

x 
y 

z 

ς° 

Figure 2.2 ϑ is shown to have the invalid bit-degrees angle of one. This supports
the need to identify these angles as being unrepresentable within a
conformation of a protein.

∀i∀j . . . ∀n

n∑

h=1

f(X)

ξijk...n

(2.3)

Equation 2.3 varies all angles for every combination possible for atoms within

the protein. It is important to note that any set of angles not corresponding to

the fixed angles within a set of atoms spread zeros throughout all matrices using

that invalid angle sequence. Equation 2.3 ensures that illegal angles reflect a high

energy value by forcing it to infinity. Computers may generate a divide by zero error;

however, this is key in knowing we have an ill-formed protein.
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Figure 2.3 Illustration of Genotype to Phenotype domain

2.1.2 Genotype. Generally speaking, the genotype of an individual is that

individual decomposed into parts or building blocks. This can be represented as

different types of data blocks or data structures within a computer. For the most

part, this coincides with how the problem is encoded and, in all cases, the makeup

of the genotype (whether it is a binary number, real number, or object encoding) is

driven by the algorithm domain used to solve the problem.

2.1.3 Phenotype. The phenotype is the physical representation of the ge-

netic code in the algorithm domain (genotype). Problems in the real world (pheno-

type) are almost never readily encoded into computer terms. In fact, most problems

have several levels of encoding before being fed into an algorithm for evaluation.

For example, the PSP problem encoding has different levels of encoding where the

phenotype representation is the actual physical structure of the protein. In Figure

2.3 the phenotype is illustrated on the left side with the picture of a protein and

the genotype is illustrated on the right side as that protein is represented within the

computer in bit string form. The mapping from phenotype to genotype domain is

described with the arrows and formats between each domain.
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2.2 Genotype and Phenotype of the PSP problem

The genotype and phenotype are defined above; however, many details have

been left out of the PSP problem’s genotype and phenotype. This section continues

the discussion and defines the biochemistry domain (phenotype) and the offered

algorithmic solution (genotype) as they relate to this thesis investigation.

2.2.1 Diagrams/Graphs for insight to problem domain. Proteins are con-

structed of a linear chain of amino acids. This is illustrated in Figure 2.4. Generally

speaking each amino acid in a protein is linked into what can be called the protein’s

backbone structure [8] with the following sequence of backbone atoms: nitrogen

(N), alpha-carbon, and carbon (C) (this is illustrated in Figure 2.5). Additionally,

bonded to Cα are residue, R, or side chain and hydrogen (H) atoms. Furthermore, a

protein is constructed with a sequence of these amino acids. In addition to knowing

the makeup of amino acids, it is known they exist in 20 different configurations (See

Appendix A and B) each with its own unique side chain (atom sequence), R [94].

One can picture a protein’s backbone starting with N and running through the se-

quence of atoms within each amino acid until it ends with the last C in the last

amino acid. The sequence for a four amino acid protein would look like: N-Cα-C-

N-Cα-C-N-Cα-C-N-Cα-C. Each sequence of three atoms (N-Cα-C) has the structure

shown in Figure 2.5 plus a side chain. A sequence of four amino acids is illustrated

in Figure 2.6. The number of shapes that even a small protein can take on would be

quite large. At this point, the sequence of atoms, amino acids, and bonds has been

defined; furthermore, we even know from Chapter 1 how a protein is built. But,

what we don’t know is how this protein functions. Protein functionality is sought

for many reasons. One such reason is that by finding a particular protein’s function

it may lead to curing a disease [49]. With proteins, conformation equals function

[94]. Therefore, if we want a protein that has a specific function, we need to know its

final conformation before generating it. This brings us back to the original problem,

what is the final conformation of a fully folded protein?
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Figure 2.4 High Level abstraction of a protein consisting of n amino acids. 
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Figure 2.5 Un-ionized form of an amino acid

These complex structures are known to fold in a matter of seconds [15]; fur-

thermore, the protein configuration can be complex that physical models of tiny

proteins folding cannot be emulated on today’s HPCs [67].
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Figure 2.6 Representation of Protein revealing atoms bonded together to make the
linear chain of Amino Acids

2.2.2 Simple problem vs. real-world problem instantiation. The following

simple model is used to get an appreciation of the search space complexity or the

number of different conformation a protein might take on. For this scaled down

example, consider a protein with only three atoms like in Figure 2.7.
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Figure 2.7 Simple three atom model

This illustration has circles representing atoms. The lower atom is shown to be

able to rotate. It can rotate 180 degrees about the x-axis and 360 degrees about the

z-axis. It is shown in Figure 2.7 that by limiting the angles to be integers values, the

number of combinations to evaluate are 360◦ ∗ 180◦ equaling 64800. Accordingly, if

we were looking for the best configuration, we must check each of the 64800 different

combinations. This may not seem to be difficult. In fact, a computer might be

able to run through a small number of combinations like this in a matter of seconds

depending on the fitness evaluation cost for each combination. Unfortunately, atom

conformations are not restricted to having integer-valued angles - they can have both

rational and irrational numbers as angle values. Consequently, atoms in a protein

may have an uncountable amount of different angles. This drives the number of total

possible combinations up to infinity. Clearly a computer cannot check the entire

search space. Moreover, computers have a limit to the size of search space mainly

because they are limited by the number that can represented. At the hardware

level, the number of bits in one register is limiting; moreover, at the software level,

each language has its own variable type limitations. As a result, bounded by the

limitations of a computer, we must devise a means to manage the input in a way

that a computer might have a chance to solve such an intractable problem.
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A choice between real and binary values is required. In the past both of these

encodings yield similar results [68, 9, 32, 35, 50, 20, 74]. Thus a binary encoding is

chosen and the angles are discretetized into 1024 (1Mbyte or 210) sections for every

360◦. In terms of our simple problem shown in Figure 2.7, we would have different

combinations. In Figure 2.8 it is shown that the discretetizing has given a new

meaning to angles between atoms. Replacing the normal 360◦ for a circle, we have

1024•. Where ◦ denotes degrees and • denotes bit-degrees. It can be shown that

although we have increased our number of combinations to evaluate, the problem

has been transformed into a computer solvable problem.
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Figure 2.8 Simple three atom discretized model

Extending this simple example to that of a real protein, which normally is

made of several hundred atoms, we can see how the number of combinations grows

according to the number of atoms in a particular protein. A protein with three atoms

has 210 ∗ 29 or 219 different combinations; furthermore, a protein with four atoms

(see Figure 2.8) has 219 ∗ 219 or 238 different combinations in the search space. Gen-

eralizing, a protein with n atoms, where n is two or more, has 219∗(n−2) combinations

in the search space.

219∗(n−2) (2.4)
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Figure 2.9 Fictious protein

This is a large search space. A computer using a deterministic search to find

the final folding state of a twelve-atom protein, worst case, would have to look at

2190 different structures before knowing that, within the limits of the computer, the

best structure has been found.

Discussed earlier in Chapter 1 are principles of protein folding [15]. The first

principle listed is the one that specifies that the ’lowest energy’ level also indicate the

correct geographic conformation. In nature, proteins fold to this shape automatically

and within seconds. Unfortunately, predicting this shape has been extremely difficult

because the number of variables involved increases exponentially according to the

number of atoms found in the protein. As you can see in the ’Attraction between

neighbors’ image in Figure 1.2, each amino acid interacts with every other amino

acid. These are just a few of the physical rules biochemists have discovered about

proteins. It is said that these findings combined together make up the chemistry of

the PSP problem.
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Figure 2.10 φ angle representation.

2.2.3 A Structural view point of the PSP problem. Following the decision

to use a fixed bond angle and length method we are left with the dihedral angle as

the only variant. A brief discussion of how they are developed is required. Further-

more, formulation to encode the PSP problem must also include a dihedral angle

encoding to maintain a fit model. A dihedral angle can be found given any set of

any four bonded atoms – each with x, y, and z coordinates (Figure 2.3 illustrates

and Equations 3.9-3.17 describe the mapping process.). When given a protein’s 2-

dimension chemical formula or amino acid sequence we are also being handed the

amino acid sequence for that protein. It is this amino acid sequence that also fully

describes the entire atom layout. So, now given just the amino acid sequence of a

protein we should be able to encode the protein in a dihedral angle sequences that,

after a stochastic search, fully describe the structure of the protein. Going back

to what we already know about amino acid sequences and the pattern of N-Cα-C

atoms from each amino acid making up the backbone, we can further define a set of

three dihedral angles, (φ, ψ, and ω), one for pattern of four atoms going down the

backbone of the protein. For example: If we were given a protein, such as the one in

Figure 2.9, and we wanted to encode it into dihedral angles using bit degrees, we find

angles associated with every sequence for four atoms running down the backbone.

The φ angle would be found using atoms Ni, Cαi, Ci, and Ni+1, which is illustrated

in Figure 2.10.
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The ψ angle would be found using atoms Cα(i), Ci, Ni+1, and Cα(i+1) which

is illustrated in Figure 2.11. Lastly, The ω angle would be found using atoms Ci,

Ni+1, Cα(i+1), and Ci+1 which is illustrated in Figure 2.12. Now that the backbone is

specified into angles, they can each be converted into 1024 bit degrees. The second

hurdle is encoding each side chain or residue hanging off the backbone. We do this in

the same manner as we did the backbone. Starting with the three, already specified,

backbone atoms plus the first atom making the side chain, each atom of the side

chain is then specified one at a time using three previously specified atoms until each

atom is specified with unique dihedral angle. Considering there is 20 different side

chains, each offering a different number of dihedral angles, these angles are labelled

χ1, χ2, . . . , χn respectively. Figure 2.13 illustrates the χ(2) dihedral of a make believe

side chain hanging off of the protein we have been using in our example.

2.2.3.1 Data structure Decomposition. The real world data decom-

position discussed is an encoding of the problem into a computer solvable problem;

however, there are more steps to map the problem from the dihedral angle into a

workable string of bits for the fmGA to use in the search for the lowest possible

fitness value. Equation 2.5 is this transfer function.
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AminoAcids1 → Atoms2 → Dihedrals3 → BitStringRepresentation4 (2.5)

Equation 2.5 describes the data structure decomposition down to the bit repre-

sentation. During the algorithm search, the bit representation is changed frequently

and after each change a evaluation of merit is needed. This need for an evalua-

tion prompts a second transfer function needed to recompose the data in a manner

which can be evaluated for merit. The following function resolves the atoms into

two different representations and describes this type of transfer:

[x, y, z]1  [a, b, d]2  [φ, ψ, ω, χi]3  [0, 1]4 (2.6)

Equations 2.5 and 2.6 are transfer functions describing data decomposition and

format decomposition on a high abstract level. The evaluation of fitness occurs when

the atoms are described by their Cartesian coordinates (Indicated by Subscript 1 of

Equation 2.6).

2.3 Domain Formalization for cartesian coordinates

• Input Domain

Pi ≡ Input protein where protein P(A, B), where A is the set of atoms and B

is the set bonds connecting atoms. A is the x-tuple having the x-y-z coordi-

nates and properties of that particular atom. B is a y-tuple having properties

identifying bond types. Mi ≡ Input set of known amino acids patterns M(A2)

where is a known amino acid formula.

• Transitional Domain

∼Pj ≡ Processed protein where P(A2) is protein Pi after it has been broken up

into the set of amino acid sequences and then into the set of atom sequences,
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A2 where A2
i is a 3-tuple holding the x-y-z coordinates of atom i, A2

i , with

respect to (WRT) the previous atom. Where A2
0 = (0, 0, 0) because it is the

atom at the origin.

• Output Domain

O(A2) ≡ Final atom coordinates. A2
i is a 3-tuple holding the x-y-z coordinates

of amino acid i, A2
i , WRT the previous atom.

• Operators

D(X) ≡ Dihedral angle calculation given a set of four atoms.

• Feasible/Optimal Conditions

Ej(Pi) ≡ Energy calculation for a particular protein conformation. f(X), input

conditions where the sum is the fitness of a solution f(x) =
∑t

j=1 Ej(Pi). C(Pi)

Feasibility check for valid angles between all atoms in protein Pi.

As described in Section 2.2.3, Dihedral angles are described using four atoms.

Figure 2.14 depicts four atoms and their corresponding dihedral angle. 

z 

x

y

Dihedral 
Angle 

Figure 2.14 Simple example of four atoms making a measurable dihedral angle.

• Energy Calculation

Figure 2.15 illustrates numerous positions bonded atoms might have in a pro-

tein. In addition, it plots how these configurations influence the potential

energy calculation. The balls are representing atoms and graphed curved lines

(on the right of each position) are identifying the interacting variable affect-

ing the potential energy for that conformation. Each of these conformations

2-15



occurs between each bonded atom within a protein. Each of these six func-

tions makeup the energy function used to calculate the fitness of a particular

conformation.

 

Figure 2.15 Graphical description of energy functions and how they are translated
from physical atom-bond relationships to Potential Energy Functions.

2.4 Importance of Energy Function

Search algorithm rely solely upon the ability to be able recognize good so-

lutions. For the PSP problem, this recognition comes in the form of an energy

function or fitness functions. Solutions found to be dominate by one may be found

to be weaker by others using a different fitness function. This is why it is extremely
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important to have the most suitable fitness function for the problem. This suit-

ability is particularly difficult to achieve for the PSP problem. Many factors are

involved in choosing an suitable energy function. Potential energy [96], quantum

mechanical energy, chemistry of the protein [89] [37] [38] [5] [99], empirical force

fields energy, energy surface with the largest statistical weight [37] and entropy [80]

are just a few of the fitness function ingredients that may be used. This thesis effort

uses the CHARMm Energy model. CHARMm is a potential energy model where

minimization search techniques are employed.

2.5 CHARMm ENERGY FUNCTION

Essentially the CHARMm energy function sums the internal terms or bonded

atom energy and external terms or non-bonded atom energy of a particular protein

in a specific conformation.

Etotal =
∑

(i,j)(connect)

E(bonded) +
∑

(i,j,k,...,n)(!connect)

E(non− bonded) (2.7)

Bonded energy is the sum of bond stretching, bond rotation, bond bending, improper

torsion and hydrogen bonding energy reduction between each connected or bonded

atom.

Estretching =
∑

(i,i+1)

Kb(b− b0)
2 (2.8)

Where Kb is the force constant determining the strength of the bond, b is the actual

bond length and b0 is the ideal bond length (Equation 2.8). The bending energy

is similar to that of the stretching energy where Kθ is the force constant, θ is the

actual measured angle, and θ0 is the ideal angle. This is primarily a penalty function

(Equation 2.9).

Ebending =
∑

angles(i,j,k)

Kθ(θ − θ0)
2 (2.9)
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The third term in the bonded energy calculation representing the accounts for a

reduction in the van der Waals term between the hydrogen atom and the acceptor

atom [11] (Equation 2.10).

Ehydrogen =
∑

i

(
A′

ri
AD

− B′

ri
AD

)
cosm(θA−H−D) ∗ cosn(θAA−A−H) (2.10)

The fourth term in the bonded energy calculation representing the torsion angle po-

tential function which models the presence of steric barriers between atoms separated

by 3 covalent bonds (1,4 pairs) is shown in Equation 2.11.

Etorsion =
∑

(i,j,k)∈D

Kθ(1− cos(nφ)) (2.11)

EImproper−torsion =
∑

ω

Kω(ω − ω0)
2 (2.12)

Equations 2.8, 2.9, 2.10, 2.12 and 2.11 make up the energy for bonded atoms:

Ebonded = Etorsion + Ebending + Ehydrogen + Estretching + EImproper−torsion (2.13)

The final terms for the calculation of energy are the non-bonded related terms, elec-

trostatics, water-water interaction and van-der-Waals. These terms may be com-

bined into the following sum:

Elennard−jones =
∑

(i,j)∈N

[(
Aij

rij

)12

−
(

Bij

rij

)6
]

(2.14)

Constants A and C are interaction energy using atom-type properties. D is the

effective dielectric function for the medium and r is the distance between two atoms

having charges qi and qk.

Eelectrostatics =
∑

(i,j)∈N
[

qiqj

Drij

]
(2.15)
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Ewater−water1 =
∑

i Ki(ri − ri0)
2 (2.16)

Ewater−water2 =
∑

i Ki(θi − θi0)
2 (2.17)

Contributions of water-water constraints of distance and dihedral angles are show

in Equation 2.16 and 2.17 respectively. Furthermore, the entire contribution of non-

bonded energy is given by equation 2.18.

Enon−bonded = Elennard−jones + Eelectrostatics + Ewater−water1 + Ewater−water2 (2.18)

The CHARMm energy function is quite computationally expensive. In Table 2.1 a

comparison of CHARMm, AFIT CHARMm, Amber, ECEPP, and Optimized Po-

tentials Potentials for Liquid Simulations (OPLS) is illustrated. The coding details

and objective decomposition is discussed later. Notice that CHARMm covers each

one of the possible energy equations; however, AFIT’s CHARMm has reduced this

function due to the insignificance of these other forces. AFIT CHARMm was used

in this Thesis investigation and has been found to be a valid model in the past [65].

In addition to these energy models many other models have been used for other

approaches. The Random Energy Model (REM) was applied to the PSP problem

bye Bryngelson and Wolynes [12]. This energy model was originally used in spin

glass theory [22]. Other such fitness function models have been applied to the PSP

problem using enthalpy [80], conformational entropy, hydrophobic/hydrophilic [84],

and distance matrix models employing Frobenius norm of differences , Hoeffding

inequality keeping corrected distances for fitness function terms [84], and ring closure

on local conformations [38]. Moreover, all these models have the same theme in trying

to define the properties a real protein has when folding. Today, it seems that no

single model has prevailed and the search for the perfect fitness model continues.
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Equation # −→ 2.8 2.9 2.11 2.12 2.14 2.15 2.10 2.16 2.17
Acronym Name
CHARMm Chemistry at X X X X X X X X

Harvard using
Molecular
Mechanics

AFIT X X X X X X
CHARMm
Amber Assisted Model X X X X X X

Building with
Energy Refinement

ECEPP/3 Empirical X X X X
Conformational
Energy Program for
Peptides

OPLS Optimized Potentials X X X
Potentials for
Liquid Simulations

Table 2.1 Comparison Of Common Energy Functions used in solving the PSP
problem [96] [87] [20]

2.6 Summary

This Chapter has discussed the PSP problem domain. Using a phenotype to

genotype mapping, it has delineated the problem in computer terms and constraints.

Furthermore, it established that this is a minimization problem (which every problem

can be converted to such a problem [73]) and the fitness function to minimize is

defined. Chapter 3 covers different types of tools to solve the PSP problem and then

maps this problem.

2-20



III. Possible Algorithm Domains
“To the man who only has a hammer in the toolkit, every problem looks like a nail.”

-Abraham Maslow

The universe is in a continual state of change – evolving such that the entire

process, life, is in flux. Evolution defines this universe with levels of abstraction

called selection or chance of survival. When attempting to capture these levels of the

evolutionary process, the researcher mimics, in computer language, each level of this

process as they are understood. These levels of abstractions personify parts of the

evolutionary process; furthermore, each computation stratagem discussed contain a

subset of these levels of abstractions. This Chapter is a discussion on methods used

for characterization of the evolutionary process. All types of methods are covered

direct measurement methods to full simulations of the folding process. Following

this is a short discussion of methodologies used at AFIT and a problem domain to

algorithm domain mapping.

3.1 Background

Approaches to finding the structure of a fully folded protein are numerous.

They range from software to hardware driven, theoretical to empirical, and fine to

coarse-grained. To highlight the more generic methods, the following are discussed:

X-ray crystallography [94][88], molecular dynamics, nuclear magnetic resonance spec-

troscopy [48], Monte Carlo analysis [83], atomistic and non-atomistic lattice simu-

lation, off-lattice simulation 3.6 and genetic or evolutionary algorithm approaches.

These methodologies are classified in Table 3.1. There are many reasons for having

a variety of approaches. Some protein conformations are easily found using empir-

ical methods, like x-ray crystallography, because they crystallize easily, yet others

are found in solution using nuclear magnetic resonance spectroscopy [94]. The time

involved in finding structures using these empirical measurement techniques may be

sometimes cost prohibited. In addition to the time investments, all approaches have
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resolution limitations making the decision maker choose between measurement preci-

sion and time investments. These are just a few of the reasons there is a requirement

for having alternatives methods when identifying the protein resting. Also, these

approaches are often used to compliment one another. The following is a discussion

on these various approaches.

Experimental Methods Simulation Energy Minimization
X-Ray Crystallography X
NMR Spectroscopy X
Molecular Dynamics X
Monte Carlo Analysis X
Lattice Simulations X
Off-Lattice Simulation X
Evolutionary Algorithm X

Table 3.1 Classification of methodologies used in solving the PSP problem. For
advantages and disadvantages see Sections 3.2, 3.3, and 3.4.

3.2 Experimental Methods

Experimental methods require specialized equipment to measure the physical

three dimensional structure of the protein. In addition to expensive equipment,

these techniques also require many hours from expert technicians to discover protein

conformations.

3.2.1 X-Ray Crystallography. X-ray crystallography is an empirical ap-

proach that is composed of three components: source of x-rays, a protein crystal,

and a detector or x-ray film. An illustration of equipment used for x-ray crystal-

lography at Lawrence Livermore National Laboratory (LLNL) is shown in Figure

3.1. To generate highly ordered crystals one could use slow salting of protein in a

solution [94][88]. It should be noted that crystallization of proteins is an art and

can take large amounts of time and patience; furthermore, some proteins cannot

be crystallized1. Once a crystal is obtained, it is then mounted between an x-ray

1Approximately 65% that crystallize rarely or never [88]
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Figure 3.1 X-ray Diffraction Equipment found at Lawrence Livermore National

Laboratory [88]

source and detector. The narrow x-ray beam is then passed through the crystal

- scattering occurs [88]. The detector then records this scatter like film records a

picture. Finally, after data has been collected the detectors pattern is described by

a applying a mathematical relation called a Fourier transform. The output comes in

the form of an electron-density map (contoured plot). The map can then regenerate

the placement of each atom within the protein. This method is extremely effective

and has been the major source of protein structure identification to date. It is known

that it takes skilled scientists 2 to 3 months to have a protein’s structure if given

a crystal of that protein [27]. Currently, X-ray crystallography describes over 80%

of the protein structures deposited in the protein databank [26]. In Figure 3.2 it is

illustrated that in 2001 there are 3298 structures added. This means that at least

2600 are found using X-ray crystallography. At this rate, researchers can find about

216 proteins a month [26].

3.2.2 Nuclear Magnetic Resonance Spectroscopy. Another method called

NMR Spectroscopy can reveal the protein’s conformation while the protein is in a

solution. Normally, this method is used to in conjunction with x-ray crystallogra-
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Figure 3.2 Year vs Total Available Structures held in the Protein Data Bank [26].

phy. This method alone only contributes to about 16% of the total amount deposited

structures in the Protein Data Bank [26]. It is based on the knowledge that hydro-

gen’s atomic nuclei are intrinsically magnetic and have a measurable energy state

with the application of a magnetic field. Depending on the orientation of the hy-

drogen atom at the time of observation there are two states of observed hydrogen:

alpha and beta [48]. Accordingly, these two states emit different energy levels - the

difference between these states is proportional to the strength of the applied field.

Using this technique, a multidimensional NMR spectroscopy approach can nail down

orientations of hydrogen molecules along the backbone of a protein thereby allowing

researchers to discover the structure of the evaluated protein. The advantage of this

method over x-ray crystallography is that there is no need for a protein crystal - the

conformation is simply found by placing the protein within solution. However simple,

this method is limited by obtainable resolution and the time to get results. As com-

pared to x-ray crystallography, x-ray crystallography can obtain higher resolution

than NMR, but it takes longer time range to do so.

3.3 Simulation Methods

Simulation methods are computer programs that attempt to solve the PSP

problem by simulating the folding process. These methods normally use extensive
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computational resources and require considerably more time than energy minimiza-

tion methods. Moreover, corporations like International Business Machines (IBM)

Corporation has recognized the need for extensive computational resources to run

these experiments and is gathering data for the constructing a petaflop computer

specifically designed for simulating the protein folding process [23][64].

CPUspeed = 4000n1015flops (3.1)

In examination of IBM’s petaflop computer chances of solving the PSP problem

we turn to what is known about the computational requirements for a simulation.

It is known that the time steps required to accurately account for thermal oscil-

lations of the protein are on the order of one femtosecond (10−15 sec) [66:5–7][32].

Therefore, if a single calculation between two atoms must be computed within a

femtosecond, the number of calculations required for a single pair combinatorially

rises as the number of atoms is increased. For example, if it takes 4000 flops to cal-

culate one quantum mechanical function between two atoms, the number of floating

operations per second (flops) require would grow exponentially 4000numberofatoms per

femtosecond for a real time simulation. Equation 3.1 illustrates formula for finding

the a CPU’s computational speed requirement, where n equals the number of atoms

for a particular protein. IBM’s petaflop computer has not been constructed yet and

it still is not going to meet a protein simulation’s computational need. To date,

these methods where used in finding 2% of the total number of proteins found in the

Protein Data Bank [26].

3.3.1 Atomistic and Non-Atomistic Lattice Simulations. It is necessary

to define the components of lattice space. A space lattice is an infinite, three-

dimensional periodic arrangement of mathematical points. Lattice space is a mathe-

matical model having points that can represent an atom or group of atoms according

to how the model is to represent a given model. In this case, the model is a protein
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Figure 3.3 An example of using a lattice space model (b) to represent atoms in
crystal form (a) [91].

having a set of definable atoms. A lattice space mathematical grid point could rep-

resent either an atom or an entire amino acid. Furthermore, a lattice model would

be layered having sub lattice space models within each higher level model. In the

scientific visualization world this concept is called world within worlds [81]. The

following list explains the difference between Atomistic and Non-Atomistic Lattice

models.

 

Figure 3.4 An example crystalized graphite growth [91].

• Atomistic Lattice The atomistic lattice model simply has each mathematical

point representing each atom within a protein [79]. For example, illustrated

in Figure 3.4 is a small model of crystallized graphite. If the research uses an

atomistic lattice model, each point in Figure 3.4 becomes a point in the lattice

space model.
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• Non-Atomistic Lattice A non-atomistic lattice model is a bit more complicated.

A single mathematical point can represent a group of atoms versus the atom per

point model discussed above. For example, in Figure 3.4 it is easy to identify

two separate surfaces. In addition to these two surfaces being constructed

of the same type of atoms and having the same structure, they both can be

grouped into two separate entities. These larger entities can then be treated as

a single object with properties equal to that of all the atoms combined within

the encompassing object.

These models can then be used in a quantum mechanical energy, molecular

dynamic model, or Off-Lattice Monte Carlo simulators (described in Section 3.3.4)

to find final resting conformations. It should be noted that lattice models come

in many different configurations, like cubic, hexagon, and diamond shapes. These

configurations fit nicely into scientific visualization techniques called grid alternative

selection [81]. Furthermore, these models require grid generation for solving par-

tial differential equations governing a model of some physical field phenomenon (in

our case a protein model). This is usually executed in CAD data describing some

geometry - specifically a set of finite points discretizing the given curves, surfaces,

and possibly a surrounding volume might be the output. This technique is normally

used when needing to evaluate a prototype’s structural soundness and flight stabil-

ity (vortexes) before huge amounts of money is invested in physically building the

model; however, in this case a physical model is not of any value, but one can build

the model virtually with these grids. These grids are decomposed into two types:

structured and unstructured [81]. Structured grids refer to grids that are constructed

of elements that are topologically equivalent to a square or cube. All other grids are

termed unstructured. In Figure 3.5, there are six grids shown. The PSP problem is

mapped onto an unstructured grid if using the Atomistic or Non-Atomistic Lattice

model. However, upon mapping a protein to a grid resolution can be impacting the

solution resolution the new grid model might be able to achieve.
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Figure 3.5 Six grid alternative selection configurations are shown: a) multiblock
structured, b) unstructured-triangular, c) unstructured-quadrilateral,
d) gybrid, e) Chimera, and f) hierarchical grid [81].

3.3.2 Molecular dynamic model simulation. Molecular dynamic (MD)

model simulation is used as another approach to simulate protein folding. This ap-

proach focuses on the known properties of a protein, its atoms, bonds, and the phys-

ical world. The simulator is programmed to have each atom interact as they would

in the real world - hence, a simulation of the entire folding process results. Because

each atom has numerous intensive calculations to determine attraction/repulsion,

positioning, bond flexibilities, etc, this method can only handle small proteins and

takes an unreasonable amount of time to converge to an answer. Furthermore, this is

exactly why IBM has determined that a dedicated computer architecture is needed

in simulate using MD models [23]; however, as discussed in section 3.3, IBM still has

limitations on protein sizes even with a petaflop computer. This technique might be

more useful if we were given a conformation that is close to the correct conforma-
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1 Select a pointa in phase spaceb, x (initialization)
2 Create a new state from x, x’ (Markov processc)
3 Compute the transition probability of state x → x′ , W(x,x’)
4 Generate a (pseudo) random number, R, uniformly distributed in [0,1]
5 If W < R then state is unchanged, remains as x.
6 Repeat (from step 2). Otherwise, accept x’ as the new state and repeat (from step 2).

aA point in the algorithm could be either a group of atoms’ or a single atom’s position
bPhase space could be selected subspace within the entire area (select few atoms) to optimize or it

could be the entire space itself (all atoms)
cA first order Markovian process is when a random event or next event is dependant on only the most

recent observation [92].

Table 3.2 General algorithm for a Monte Carlo simulation.

tion of the protein, we could then submit the ’close’ answer to a molecular dynamic

simulator and possibly get the answer more quickly than if the simulator were given

no conformation information at all. This concept is equivalent to using a localized

search or fine tuning on thought to be close conformations.

3.3.3 Monte Carlo. Monte Carlo simulations are based on the the evalua-

tion of a system by generating random solutions to solve problems of any kind. This

is true for the PSP problem as well, in fact, there are are many examples of such

work [83].

The general algorithm for a Monte Carlo method [45] is in Table 3.2.

The Monte Carlo algorithm in Table 3.2 displaces atoms, one at a time, un-

til the overall energy or conformation evaluates to something with better merit.

This randomness might provide good solutions; however, because it is a memoryless

method, it may prevent previously good partial conformations from evolving into

the correct final conformation.

3.3.4 Off-lattice Monte-Carlo Simulations. A different kind of simulation

method called off-lattice simulation is close to a divide and conquer algorithm. It

calls for the drawing boxes around parts of the protein structure to be evaluated.
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This prepares the protein’s initial configuration by drawing a desired density (box

size and number of particles) about the area to conform. Normally, a simple lattice

cube is utilized for the density box. Within each density box, atoms are selected

one at a time and moved a random distance from their present location. Figure 3.6

illustrates density boxes and atom selection and agitation. Energy calculations are

performed before and after the move. If the energy value is lowered due to the move,

the new atom position is kept; otherwise, the atom is moved back to its original

position. This continues until results are good enough or supplied stopping criteria

is met. In Figure 3.6 the darkened circles represent the atoms within the active

density box where atoms are chosen. The arrows represent the forces from atoms

that are close enough to interact with selected atoms within that density box. [60]

 

Figure 3.6 Illustrating the density boxes and analysis of atoms within each box
during the Off-Lattice Simulation method [60].

3.4 Energy Minimization Methods

The energy landscape algorithms are based on the idea that a protein’s final

resting conformation is found at the conformation that yields the lowest overall en-

ergy of the protein. Force field energy equations, like Assisted Model Building with
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Energy Refinement (AMBER) [58], Empirical Conformational Energy Program for

Peptides (ECEPP) [87] and CHARMm, are typically used in calculating the en-

ergy for a specific conformation. The disadvantage to using these methods are two

fold: 1) the problem of enumerating every possible conformation a protein could

possible retain and 2) a highly computational fitness or energy evaluation function

that needs to be evaluated at each of the possible conformations. Given by the

fact that the number of conformations a protein could retain is uncountably in-

finite, it is impossible to enumerate every possible combination of conformations.

Even when decomposing a protein into dihedral angles and limiting the values that

theses dihedral angles can take on the number of possible conformations would

be (Number of V alues a Dihedral can have)Number of dihdral angles. Furthermore,

it has been measured that one fitness evaluation takes 15msec on today’s high-end

computers, it can be concluded that the fitness evaluations of each conformation

alone for even small proteins, is going to cost much computational time (approxi-

mately 2.5 ∗ 10114msec from Equation 2.4). This is precisely why alternative algo-

rithms have evolved to solve specific problems. Following is a discussion of GA’s

employed at AFIT for solving the PSP problem [90] [56] [80] [84]. The PSP problem

has been attacked with many different forms of GAs including: simple GA (sGA),

mGA, Parallel GA (PGA), fmGA, pfmGA, GAs with local searches (Lamarckian,

Baldwinian, and Niching), and other smart operator techniques. All the following

GAs utilize the same CHARMm energy model as a fitness function. This fitness

function was ported from Fortran to C as the choice fitness function in 1991 [35].

A short discussion of fitness functions and operators to applied to these function is

found in Chapter 2.

3.5 Historical Perspective and AFIT GAs

In 1991 AFIT launched an effort to solve the PSP problem using a GA ap-

proach. Captain Laurence Merkle applied both a sGA and mGA (Defined below)
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[68]. GAs are ”search algorithms based on the mechanics of natural selection and

natural genetics” [40]. These algorithms are rooted back to the Darwin’s theory of

evolution, natural selection, and genetics [46]. All GAs discussed within this Thesis

have originated from the sGA. Furthermore, understanding the sGA is paramount

to understanding such extensions.

The first step to applying a GA is to transform the problem domain solution

variable structure into a fixed length binary string - called chromosomes. In other

words, a solution should be representable by one chromosome. Individual elements

of a chromosome are called features - corresponding to the genes of a chromosome.

Feature values are the values that one feature may take on - these represent alleles

of a gene. The set of every allele is the genetic alphabet [40]. An example of a

genetic alphabet is the set 0,1 and 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F – better know as

binary and hexadecimal alphabets respectively. After a discretized encoding scheme

is applied to the problem, there must be a way to decode and evaluate the merit of

a specific chromosome or solution. This is normally called the fitness function – it

checks the fitness or merit of a solution. Its main purpose is to give an indicator if

one chromosome is better than another. To evaluate the fitness of a chromosome, a

decode occurs. Then a the fitness evaluation concludes which is a high computational

analysis of the chromosome. This costs the algorithm in time (Such as the energy

fitness function in our GA used to search the PSP problem energy landscape).

3.5.1 Simple GA. The main routine in a sGA, after encoding the problem,

builds a population of chromosomes. It then selects an individual from the current

population and uses reproduction via crossover and mutation to generate a new

population - each time evaluating the newly created chromosome’s fitness. Each new

population member is placed in the a new population pool. When the new population

pool is full (population size is predetermined), then the new population replaces the

old. This is a generational GA. The routine then repeats itself. Figure 3.7 illustrates

this cycle. The dotted lines indicate the barrier between the real solution problem
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domain and the encoded solution or chromosome domain. Complexity estimates for

the Simple GA are in Table 3.3.

Phase Serial
Initialization O(ln)

Recombination O(g*n*q)
Exchange Populations O(1)

Overall mGA O(ln)

Table 3.3 Complexity Estimates for the sGA. Where l is the length of chromosome,
n is the size of population, q is the group size for a tournament selection
and g is the number of generations.

3.5.2 Steady State GA. The main routine in a Steady State GA (ssGA),

after encoding the problem, builds a population of chromosomes. It then selects

an individual from the current population and uses reproduction, crossover and

mutation to generate new population members - each time evaluating the newly

created chromosome’s fitness. Upon evaluation of a better chromosome, that better

chromosome is placed into the original population. The routine then repeats itself.

Figure 3.7 illustrates this cycle. The dotted lines indicate the barrier between the

real solution problem domain and the encoded solution or chromosome domain.

Complexity estimates for the ssGA are in Table 3.4.

Phase Serial
Initialization O(ln)

Recombination 0(g)
Overall mGA O(ln)

Table 3.4 Complexity Estimates for the ssGA. Where l is the length of chromo-
some, n is the size of population and g is the number of generations of
reproduction.

Normally, the initial population of chromosomes is randomly generated in an

effort to give good exploration of the search space. Additionally, the size of the

population is maintained at an ”optimal number” to help aid selective pressure

during the progressing search. This optimal number can be described by the schema
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Figure 3.7 High Level overview of solving real world problem with a sGA.

theorem where the proportion of selection is used in determining what is needed to

increase the probability of instances of a schema occupy the population [3]. This

is important because large population sizes result in large memory space usage,

stressing and degrading the efficiency of the algorithm. Also, under specifying a

population size causes poor effective algorithm results. In addition to population

sizing, another interesting part of GAs is the application of different operators to find

better chromosomes. Basic operators come in the form of crossover and mutation.

These operators are applied after a selection mechanism. Other operators have been

used specifically to improve upon solutions for the PSP problem [7]; however, none

have proved to be dominate. The mutation operator, crossover operator, and choice

selection mechanisms are defined as the following:

• Selection

Reproduction begins with the selection mechanism. The following are the two

main selection pool determinations for the selection mechanism.

1. µ represents parent solutions and λ represents offspring solutions.

2. (µ, λ) Offspring is chosen from the offspring solutions only. The offspring

is generated by using mutation and crossover operators.
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3. (µ+λ) Offspring is chosen from the parents and offspring solutions both.

The offspring is generated by using mutation and crossover operators, but

the parents are acquired from the previous population.

Once the selection pool is determined, then the selection mechanism itself must

be chosen. The idea is to chose a mechanism for developing the speciation of

the population into something that results in finding good solutions. There are

many selection mechanisms. The following is a discussion of only two: roulette

wheel and tournament selection. The fmGA uses tournament selection with

threshholding as its selection mechanism; therefore, these are defined as the

following:

1. Roulette Wheel

Selection using this type of mechanism is common. Each member is as-

signed a slice of a pie. Where the entire pie represents the total fitness of

every member in the population and each member’s slice is the proportion

of their fitness with respect to the total of the entire population’s fitness

(See Equation 3.2). Once all member have been assigned their slice, a

random number from 0 to the sum of every population member’s fitness

is generated to indicate which member has been chosen. This gives the

members with better fitness values a higher probability of being selected.

[3]

∀j∃Slicej =
f(mj)∑n
i=1 f(mi)

(3.2)

Where n is the size of population and m is a single member.

2. Tournament Selection

This is another common selection method. A group of q populations

members is randomly selected from the population. They can be selected

with replacement or without. This group takes place in a tournament
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and the winner is determined by its fitness value. q is the called the

tournament size. The winner is placed in the new population pool and

the process is repeated until the next population is full. [3]

Threshholding

Threshholding is a constraint added to the selection of the q tournament

members. Each member is selected a certain predefined distance apart

from one another. This is essential to prevent incest among population

members. This is also used in the fmGA used in this Thesis. [3] 
 
 
 
 

1 1 0 1 1 1     1 1 0 0 0 0 
              
              

0 1 1 0 0 0     0 1 1 1 1 1 
 

Chromosome 1 

Chromosome 2 Child 2 

Child 1 

Crossover Point 

Figure 3.8 An example of single point crossover applied after selecting two popu-
lation members.

• Crossover

This is the primary device for the fmGA to reproduce. Its basic purpose is to

take two chromosomes from the population, cut them between the same two

genes and splice the 1st half of the 1st chromosome with the 2nd half of the 2nd

chromosome and the 2nd half of the 1st chromosome with the 1st half of the

2nd chromosome. Thereby making two new chromosomes ready for evaluation.

This is represented by example in Figure 3.8. The example illustrates a single

point crossover; however, crossover may be utilized as a multi-point operator

where only a subsection, identified by two or more points , of the chromosome

is crossed over. [3]

• Mutation

The mutation operator is needed for increasing exploration by reducing selec-
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Figure 3.9 A simple example of mutation applied.

tive pressure during the search. It is normally employed only a small percentage

of the time. This operator’s application occurs by changing a randomly selected

gene. For canonical GAs, it simply flips the bit if the alphabet consists of 1s

and 0s. Figure 3.9 uses an example to illustrate how this operator is applied.

This type of mutation can be called hill climbing or sweeping. For real valued

GAs genes are shuffled around, like the scramble mutation operator [95][3].

Not all variations of crossover and mutation nor are all GA operators discussed

here; however, those covered are integrated in the fmGA used in this Thesis. Other

operators used in other GAs are the following: transposition, translocation, con-

jugation, inversion, transduction, gametogenesis, transcription and translation. A

discussion of how these operators relate to biology can be found in Appendix F.

3.5.3 Messy GA. The mGA was also implemented to solve the PSP prob-

lem by Merkle [68]. The original mGA was designed specifically to solve deceptive

problems - problems where the sGA and ssGA get caught in suboptimal trenches

in the fitness landscape without hope of climbing out [10]. These types of problems

are called deceptive because there is no path from one semi-good set of solutions to

the optimal solution. For example, a deceptive problem might be a binary string of

ten bits represented the problem and good semi-optimal answers could be found at

sequences of bits with only a single 1 in the string. But the best or optimal solution

is found at the string sequence with all the bits being 1 [68]. Furthermore, because

combinations of other sequences of bits (combinations with two or more, but not

all bits are 1) yield poor fitness evaluation values, the sGA is kept from finding the
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optimal answer. This brings to focus that crossover and mutation may not be flexi-

ble enough to find optimal solutions to deceptive problems causing the need for the

mGA.

Phase Serial
Initialization O(lk)

Primordial 0
Juxtapositional O(l log l)

Overall mGA O(lk)

Table 3.5 Complexity Estimates for the Original mGA [42]

The mGA consists of initialization, primordial and juxtaposition phases. The

use of partially enumerative initialization allows the mGA to find optimal solutions

to deceptive problems such as the one described. The partially enumerative initial-

ization builds a population of Building blocks (BB) consisting of all possible partial

solutions of a specified length. Furthermore, if the BB size is equal to or greater

than the deception present, then the initial population contains parts of the optimal

solution before the search begins and the probability that the GA finds the optimal

answer is increased. See Appendix G for a discussion of building blocks and their

association to finding good solutions.

The differences between a mGA and a sGA are many! The initial populations

are much different. The mGA produces a population of partial solutions (BBs of a

specified length) whereas the population of the sGA is a group of chromosomes or

complete solutions. The fitness function for the mGA is modified (uses a competitive

template (CT)) to handle partial solutions by being able to evaluate BB size solu-

tions; on the other hand, a sGA can only evaluate an entire chromosome’s fitness for

comparison. Associated with the type of population members held in the population

is the population size itself. The mGA has a larger initial population size than that

of a sGA. The mGA’s population size can be calculated using Equation 3.3 where

k is the block size, l is the length of the string, and c is the cardinality [33]. The

idea for such a large population size is to have every combination of a particular
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Figure 3.10 Program flow of the mGA [70]. The complexity for this algorithm can
be found in Table 3.5

block size to be present for the insurance of having the answer to the problem held

in the population. Furthermore, the mGA enriches the pop-pool with good building

blocks in some cases allowing duplicate stings to reside and periodically reduces the

total population size during selection. Finally, the mGA has variable length strings

maintained in the population where the sGA population members are essentially

always the same length - that of the original fixed string length.

kc ∗
(

l

k

)
(3.3)

Finally, these two GAs are similar in having the objective to obtain population

members that help in yielding good generations - ultimately finding semi-optimal
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Phase Serial
Initialization O(l)

Primordial (Building Block Filtering) O(l2)
Juxtapositional O(l log l)
Overall fmGA O(l2)

Table 3.6 Complexity Estimates for the fmGA [42]

solutions. Figure 3.10 is a flow chart that describes the program flow of the mGA.

The only item left out is how the fitness is evaluated each time a member is added

to any pop-pool. When the mGA initializes, it builds a CT by randomly generating

a string of the same size as a solution. Partial solution fitness is evaluated by

substituting the partial solution into the CT – replacing CT bits with bits found

in the partial solution, then the entire new CT is evaluated. Once finished, the

entire new CT is destroyed unless it is found to be better than the best competitive

template found (compared to the best found CT). If the new CT is the best found, it

is stored as the best found and at the end of each generation run the CT is replaced

with the best found CT.

The mGA solves a deceptive problem by creating a population size that con-

tains every possible combination of a particular block size; therefore, also containing

the solution. This effective algorithm comes at cost in complexity (See Table 3.5 for

mGA’s complexity), execution time, and memory space.

3.6 fast messy GA

After the sGA and mGA research continued with the studying the effects of

a paralleled version of both GAs in 1992 [9]. Following this, the fmGA was to be

named as the GA of choice [32] in 1993. Much has been written about the PSP

problem using the fmGA. [34], [32], [69], [76], [77], [18], [17], [16] and [19] scoped the

improvement of using the fmGA. Currently, we use this algorithm as the primary

search engine for solving the PSP problem. Additionally, we use this algorithm
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combined with a multi-objective approach to find an improved method for predicting

the conformation of a fully folded protein.
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Figure 3.11 Program flow of the fmGA.
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The mGA’s advantage over the sGA is its ability to explicitly create tightly

linked building blocks for the optimization of deception problem - basically, defeating

deception by insuring that it has the answer somewhere in the population of building

blocks it creates in the initialization phase. However, the mGA’s insurance policy

does not come at cost; indeed, it is extremely expensive to build every combination

of a particular building block size to put into a population. This initialization dom-

inates the entire algorithm [41]. The fmGA is designed to reduce this complexity by

replacing the initialization phase and primordial phase with a probabilistic complete

initialization (PCI) and primordial phase consisting of selection and building block

filtering (BBF). PCI and BBF are an alternate means to providing the juxtaposition

phase with highly fit building blocks [42]. The entire program flow for the fmGA

is illustrated in Figure 3.11. When comparing the complexity of the fmGA (Table

3.6) to that of the mGA (Table 3.5), it can be concluded that the fmGA has lower

complexity.

2k

(
l
l′
)

(
l−k
l′−k

)2c(α)β2(m− 1) (3.4)

The PCI phase creates an initial pop-pool size of n described by Equation 3.4,

which is probabalistically equivalent to the pop-pool size at the end of the primordial

phase of mGAs.

p(l′, k, l) =

(
l−k
l′−k

)
(

l
l′
) (3.5)

It is accepted as true that the population size is the multiplication of three

equations: The gene-wise probability equation, the allele-wise combinatoric equa-

tion, and the building block evalutation noise equation [42]. Furthermore, it can be

shown that the probability gene-wise equation is the probability of selecting a gene

combination of size k in a string of length l′ having the total number of genes, l, is

given as Equation 3.5. If, mg, is assigned to the inverse of Equation 3.5, it is sug-
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gested that each subpopulation of size ng have one needed string, on average, gene

combination of size k. Equation 3.6 defines ng. If this equation suggests that we

expect to have one of our needed gene combinations for one particular building block

size k, then we can further say that we want to have the needed gene combination

for each and every possible combination of k building block size, which makes for 2k

allelic combinations or allele-wise combinatoric population size multiplier. A second

multiplier is then defined in Equation 3.7 called the building block evaluation noise

equation. This equation makes for a population size calculation where the selection

error between two competing building blocks is no more than an α different. Finally,

we have a simple, more manageable, population sizing calculation Equation 3.8. [42]

ng =
1

( l−k
l′−k)
( l

l′)

(3.6)

na = 2c(α)β2(m− 1) (3.7)

n = nang (3.8)

Once the population size is determined, the initial population is created and

the algorithm begins. The length of strings, l′, is set to l− k. The primordial phase

performs several tournament selection generations to build up copies of highly fit

strings followed by BBF to reduce the string length toward the building block size k.

See Figure 3.11 for the program flow. It should be noted that building block filtering

is nothing more than randomly deleting genes from a particular string - effectively

reducing it [32]. An example of population sizing calculation is shown in Figure

3.12. Two 3D plots in Figure 3.13 have been generated to illustrate how the fmGA

consistently generates smaller population sizes. Observe that the fmGA and mGA

have the same juxtaposition phase. Please refer to Figure 3.11 for the flow of this
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Population size differences for the two algorithms
is astonishing.  Population size directly impacts 
algorithm run time and resource requirements.

nmga 2.276 1029×=Population Size for mGA =

npopsize 31.308=Population Size for fmGA =

nmga 2k combin l k,( ):=

npopsize ng na⋅:=

na 10:=

gene-wise, alleve-wiseng 3.131=ng
1

p l' k, l,( )
:=

probabilty a gene exists for kp l' k, l,( ) 0.319=p l' k, l,( )
combin l k− l' k−,( )

combin l l',( )
:=

l' 224=l' l k−:=

k 16:=

l 240:=

na 50:=
popsize 3:=
mga 2:=

A typical population size calculated for the
fmGA versus mGA.  Variables set to typical numbers
found for a run using the MET protein.

a 1:=
g 0:=

Figure 3.12 An example of typical calculations to find population sizes for the
fmGA and mGA. It should be noted that the population size change
for the fmGA as the building block size change throughout the algo-
rithm.

phase and the flow of the entire algorithm. To conclude, instead of having a huge

initialization cost as we do with the mGA, the fmGA has allowed a more optimal

initial population mechanism that is statistically equivalent to that of the mGA.

This concludes the discussion of previously applied GAs to solving the PSP

problem at AFIT. The fmGA was followed by the following GAs: Combined Algo-

rithm [35], Hybridized GA [35], Real Value GA [50], and a Linkage Learning GA

[20]. These algorithms are discussed in Appendix H.

3.7 Parallel fast messy GA

The pfmGA is an extension of the fmGA [42] and is a binary, population based,

stochastic approach that exploits BBs within the population to find solutions to
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(fmGA) Popsize for BB sizes 11-40 and String lengths of 31-60

fmGA_popsize

(mGA) Popsize for BB sizes 11-40 and String lengths of 31-60

mGA_popsize  

String Length 
(-30) 

Building Block Size (-10) 

Population 
Size 

String Length 
(-30) 

Building Block Size (-10) 

Population 
Size 

Figure 3.13 The upper plot is of the fmGA calculated population sizes and the
lower plot is that of mGA population sizes. The fmGA consistently
produces population sizes orders of magnitude lower than that of the
mGA. Population sizes are on the z axis while the x and y are reflecting
indexes to building block sizes of 15-75 and string lengths of 20-80.

optimization problems. Our pfmGA may be executed in a single program single data

(SPSD) or a single program multiple data (SPMD) mode. The parallelization of this

algorithm is based on the Message Passing Interface (MPI) constructs. The pfmGA

consists of three phases of operation: the Initialization, Building Block Filtering,

and Juxtapositional Phases, all using synchronous MPI based communications [77].

The pfmGA operates independently on each of the processors with communications
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occurring during the Initialization and Juxtapositional phases, this is referred to as

the Independent mode.

In the Initialization phase, a population of individuals is randomly generated

on each processor. The size of the population is based on an equation calculated

from the string length of the population members, the user specified BB sizes a

priori chosen, and the number of processors available. Subsequently the population

members are evaluated. A Competitive Template (CT) is also generated on each

processor. The CT is a locally optimized population member necessary for calcu-

lating the fitness value of population members in the later phases of the algorithm.

After a local optimization of the templates is conducted on each processor, the best

found template becomes the new template on each processor.

The Building Block Filtering (BBF) Phase follows and extracts the BBs from

the population for manipulation and the generation of solutions. This process occurs

through a random deletion of bits from each of the population members alternated

with tournament selection. A BBF schedule is provided a priori to specify the

generations for the deletion to occur, the number of bits to be deleted from each

population member and the generations to complete tournament selection. This

phase completes once the length of the population members’ chromosomes have

been reduced to a predetermined BB size. In order to evaluate these BBs (“under-

specified” strings), throughout the phase a competitive template is utilized to fill

in the missing allele values. These population members are referred to as “under-

specified” since each locus position does not have an associated allele value. The

BBF process is alternated with tournament selection to keep only the strings with

the best building blocks found, or those with the best fitness value around for later

processing.

The Juxtapositional phase follows and uses the building blocks found through

the BBF phase and recombination operators to create population members that

become fully specified (all loci values have corresponding allele values) by the end
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of the phase. Again the competitive template is used anytime a population member

is missing a locus and in the case of “over-specification”, where a specific locus

is assigned an allelic value multiple times, the first value encountered is the one

recorded. At the end of the Juxtapositional phase, the best population member

found across all of the processors becomes the new competitive template on each

processor. At this point the BB size is incremented and each of the three phases are

executed again. After all of the specified BB sizes are executed, the best solution

found is recorded and presented to the user.

3.8 Multi Objective fmGA (MOfmGA)

The MOfmGA executes using the same basic algorithm structure as the fmGA.

The differences are slight. First, the MOfmGA automatically uses a multiple com-

petitive template design where each objective function is assigned a competitive

template. This competitive template evolves to ”optimize” that particular objec-

tive function. Each population member is overlayed onto this competitive template

before evaluation of this objective function. Secondly, as the Juxtapositional Phase

completes, population members (after overlaying onto a competitive template if nec-

essary) are written to a file for post mortem processing and extraction of pareto

front points. Finally, after storing the overall best chromosome into the being the

next competitive template, a PDB file is generated using the structure having the

overall best fitness. This file is used for post mortem viewing of the structure after

completion or during execution of the program.

3.9 Basic evolutionary algorithmic approach justified

Many EAs can be applied to the PSP problem. Certainly, Evolutionary Strate-

gies, Evolutionary Programming, Genetic Algorithms, and Genetic Programming

could all be used. However, we have a working copy of the fmGA that also has an
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integrated CHARMm model. A discussion of all these alternate approaches can be

found in Appendix I.

3.10 Simplified Mapping Problem Domain to Algorithm Domain

The mathematical model for a protein conformation is rather complex and can

be represented in different forms depending on the algorithm to solve the problem.

This is the formalization used in this thesis effort.

3.10.1 Mathematical/Symbolic model.

• A = the set of amino acids (amino acid sequence) = {a1, a2, . . . , an}. For

example MET = {a1, a2, a2, a3, a4} where 1=Tyr 2=Gly 3=Phe 4=Met

• ai = the set of atoms that make-up a particular amino acid i. (i ∈ {1, 2, . . . ,

20}) which represent the 20 different amino acids.

• Aa([Amino Acid]) - function that breaks the amino acid up into a sequence

of atoms. Additionally each atom is given a cartesian coordinate (x,y,z) to

specify where the atom is in 3D space.

• Da([List of Atoms]) - function that distributes a list of atoms into dihedral

angles which specifies every atom with a set of four connected atoms.

• aD([List of Dihedral angles]) - function that takes the dihedral angles and back

calculates the cartesian coordinates (x,y,z) of each atom.

• D - the set of dihedral angles which fully specify every atom in a protein.

Additionally, D is the search variable. D = {d1, d2, . . . , dn}

• Protein, P, is specified in amino acids sequence.

D = Da(Aa(P)) Ready program to interrogate dihedral angles.

∼D = operation(D) Algorithm changes dihedral angles.

Evaluate(aD(∼D)) Determine the merit of the change.
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3.11 Problem/Algorithm Domain Operational Design Specification form

From this point forward there could be two different search techniques em-

ployed: Deterministic (Dept First Search with backtracking (DFS/BT)) and Stochas-

tic GA. It is important to mention that using either of these search techniques still

requires the trimming of the search space discussed earlier; moreover, the determin-

istic search requires a much larger amount of time than the GA in finding good

solutions to this problem regardless of the protein size. Therefore, a GA should be

employed in this thesis effort. It should be mentioned that there are approaches

considered to be a cross between a deterministic and Stochastic methodologies using

nonlinear optimization techniques called a maximum likelihood approach [24]. How-

ever, the only the deterministic and Stochastic GA are described using the following

algorithm domain mapping.

• Initialization

P∼
i = Mi(Pi) The Set of atoms in protein Pi is parsed for matching amino

acids. Atoms making up the amino acids are given x-y-z values known a priori

(using pre-canned amino acid structure coordinates). It is important to note

that x-y-z coordinates are given WRT the last atoms, so there is no need to

keep track of where each atom is on a 3D grid.

Pi = I(Pi) All bond lengths and angles between three atoms distances are set

to ideal.

• Output Domain Pi = a1, a2, . . . , at The final or the latest conformation having

the best fitness found

P∼
i = Where aj contains the spherical coordinates connecting atoms outside

amino acids. aj = (ρ, τ, υ): ρ is equal to the ideal bond distance. j is equal to

the atom i within Pi.
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• Operators T (ai) ≡ The transformation of ai’s spherical coordinates into x-y-z

coordinates stored in Pi.

D(ai, ai+1, ai+2, ai+3) ≡ Calculating a dihedral angle given 4 atoms (j = 0, 1).

uj = (ai+2+j.z−ai+j.z)∗ (ai+1+j.y−ai+j.y)− (ai+1+j.z−ai+j.z)∗ (ai+2+j.y−ai+j.y))

(3.9)

wj = (ai+1+j.z−ai+j.z)∗ (ai+2+j.y−ai+j.y)− (ai+2+j.z−ai+j.z)∗ (ai+1+j.y−ai+j.y))

(3.10)

gj = (ai+2+j.y−ai+j.y)∗ (ai+1+j.x−ai+j.x)− (ai+1+j.y−ai+j.y)∗ (ai+2+j.x−ai+j.x))

(3.11)

Nj ≡ uj î + wj ĵ + gj k̂ = ujai+j.x + wjai+j.y + gjai+j.z (3.12)

∴ dθ =
N0 ·N1

|N0||N1| where |Nj| =
√

u2
j + w2

j + g2
j (3.13)

Dihedral angle is described by Equation 3.14. Note that the sign of the Dihedral

angle is dependent on the sign of the cross product of the two planes N0 and N1.

∴ θRAD =
N0 ×N1

|N0 ×N1| cos dθ (3.14)

Let a = BL(i) and b = BL(i−1) (3.15)

∵ c =
√

x2
i + µ2

i =⇒ c =
√

(xi−2 − xi)2 + (yi−2 − yi)2 + (zi−2 − zi)2

(3.16)

The bond angle, µ, is described by Equation 3.17 and bond lengths are represented

by BL in Equation 3.15. Furthermore, it is easy to find bond lengths using the

distance equation from calculation shown in Equation 3.16.

∴ µ = cos(
a2 + b2 + c2

2ab
) (3.17)

3.11.1 Extended Algorithm Domain.

3-30



A = (A1, A2, . . . , Am) where atoms are sorted according to position in a protein

B = (bij, bij, . . . , bij) where i and j are the atoms bonded together

P∼
j = (a3, a6, . . . , aq) where ai is a mate to the atoms in A – updates

to these atoms directly updates corresponding atoms in set A

∀h∀k|Bk(i = h)∩ (Aj WRT Ak define (previous atom) from origin

∀h∀k|Bk(j = h)∩ (Ai WRT Ak for all atoms

3.12 Mapping Problem Domain to Algorithm Domain DFS/BT

Supposing that the search space might be manageable in size we could use the

following deterministic dept-first search with back tracking algorithm to solve the

PSP problem using fixed methodology. The algorithm is shown in Table 3.7.

3.13 Mapping Problem Domain to Algorithm Domain Stochastic

The PSP problem has yet to be solved with a polynomial running algorithm.

Therefore, it is not in the class of P problems, but in NP and NPC problems. The

search space for this problem is derived in Equation 2.4 after transforming it into a

computer representable problem. In Equation 2.4 the search space is shown to be

growing at an exponential rate as atoms are added.

A problem is in NP if it has a nondeterministic polynomial time solution;

this means that the solution can be checked within polynomial time. If

a problem is NP-complete, it means that a particular solution can be

checked in polynomial time but to solve the whole problem (which often

requires checking many possible solutions) requires an exponential time

algorithm. Because an exponential function increases at a much more

rapid rate than a polynomial, these problems are said to be intractable.

For a (reasonable) problem size of 20, a polynomial algorithm might

require t ∼ 20m time steps, compared with t ∼ m20 for an exponential

time algorithm). [57]
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1 Step (0) Initialization
2 Set all angles in P∼

j to the lowest possible valid angle.
3 Step (1) Evaluate
4 If f(P ) < f(best found) then
5 Best found = P
6 EnD
7 Step (2) Stopping Condition
8 If angles of P are all set to Maximum valid angles
9 stop
10 End
11 x = 0
12 Step (3) Move Forward (1st angle)
13 Increment angles ψ and θ of each ai in P∼

j

14 (This is done in a gear like manner)
15 Increment θx

16 If Max Allowable(θx) + 1
17 Goto Step (5)
18 End
19 Step (4)
20 Goto step (1)
21 Step (5) Move Forward (2nd angle)
22 θx = 0
23 ψ = ψx + 1
24 If Max Allowable(θx)+1
25 If x = |A|
26 Stop (search is finished)
27 End
28 θx = 0
29 x = x + 1
30 Goto Step (1)
31 End
32 Goto Step (1)

Table 3.7 Pseudo code for DFS/BT Algorithm .
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Time Quality of Solution
Deterministic Does not Complete Exact (Limited by constraints)
Stochastic Reasonable (Tunable) Semi-Optimal

Table 3.8 Comparison between Deterministic algorithm and Stochastic Algorithm
applied to the PSP problem

Furthermore, it has been established that the combinatory nature of the protein

structure would require an exponential time deterministic Algorithm to solve and is

a NPC problem [57]

3.14 Comparison between mappings

To compare these two algorithms one must weigh the tradeoffs of each and

select the tool according to the decision makers needs. In this case the problem has

been transformed into a computer solvable problem and could be reduced to having a

search space that is within the reach, time wise, of a deterministic search. However, if

the search space is reduced, the resolution for solutions found is also decreased. This

means that with a deterministic search algorithm the solutions found are not optimal

and may not even be semi-optimal; however, the best solution with a constrained

resolution is found. If instead of reducing the search space the resolution is increased

and it goes beyond the capabilities, time wise, of a deterministic search, a stochastic

search can be more effective in finding semi-optimal solutions. The algorithms are

compared in Table 3.8.

3.15 Summary

This Chapter discussed the High to Low level design of the PSP problem

being mapped to the fmGA algorithm domain. Background of previous AFIT and

exterior departmental work have been covered in detail. Furthermore, alternate

search tools have been discussed and justification has been given as to why this

thesis work was accomplished using a fmGA. Chapter 4 develops the methodology
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for the experiments. It covers the design of experiments and delineates the factors,

metrics and statistical methods used in comparing solutions with previous work.
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IV. Development Methodology

Discussed within this chapter is the design methodology of the MOfmGA. Devel-

opment takes place in many stages. The first stage consists of understanding the

original fmGA code. Small code modifications are made to gain knowledge of code

stability, reproducibility of previous results, options and software engineering ap-

proaches. The first implementation of a multiple competitive template mechanism,

the building block size study and the farming model is accomplished in this stage.

The second stage focuses on a rewrite and the birth of a new algorithm, MOfmGA,

and PDB file generation capabilities for structure visualization. The rewrite gave

the MOfmGA the ability to solve multiobjective problems as well as keeping the en-

hancement to handle the generating and search development of multiple and different

types of competitive templates. The final stage of design integrates Ramachandran

Plots, problem domain information, as well as RMS cartesian coordinate and dihe-

dral angle difference calculation into the MOfmGA. It was during this stage that final

experimentation was accomplished and the investigation was complete. Normally,

thesis experimentation is conducted on existing code; however, in this case, new code

gives more functionality and flexibility to solving the PSP problem. Furthermore,

this code allows for easier protein workload additions and result comparisons to ac-

cepted true conformations. Following is a discussion of the design effort undergone

to build the MOfmGA for this thesis investigation.

4.1 Algorithm Design

Although the design changes for the algorithm are extensive, each experiment

incrementally caused gradual modification to the existing algorithm until the mul-

tiobjective experiment. It is this experiment alone that caused almost an entire

re-write of the algorithm. See Section 3.8 for a description of the MOfmGA. The

following list of experiments motivated changes within the existing algorithm. Fol-
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lowing this list, the design of each algorithm modification to support each experiment

is discussed.

1. Multiple Competitive template

2. Farming Model

3. Protein 3D File Generation

4. Multiobjective

5. Ramachandran

6. RMS difference

4.2 Research Design

The fmGA is written in ansi C. Originally, it was written for use on Sun

Workstations [32]; however, it has since been ported to run on Linux. Using Linux is

advantageous for researches because it is an open source and free operating system.

The algorithm had been changed significantly since its induction with Gates and, for

the most part, had few Software Engineering practices followed during the last few

years of transformation. In fact, the main function was several thousand lines long

making for difficulty in understanding and adaptation. Design modifications made

in support of experiments for this thesis investigation fit or modify the pseudo code

for the fmGA found in [32].

4.2.1 Multiple Competitive Templates. Generation of multiple competi-

tive templates during algorithm search is not a simple modification. As discussed

in Section 3.8, each chromosome in the population must now have a fitness value

associated with each competitive template maintained. Moreover, every evaluation

call must evaluate a particular partial chromosome with every competitive template

available. Pseudo code for this new evaluation mechanism can be found in Table 4.1.
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# Passing any number “ct” lower than the total number of competitive
# templates results in the evaluation of only that competitive template
# for a specific chromosome. Passing a number equal to the total number
# of competitive templates results in an evaluation of all competitive
# templates. Passing a number greater than the total number of competitive
# templates results in an evaluation of the partial solution using the
# panmetic competitive template.
1 Evaluation(c,ct)
2 partial solution c
3 int ct
4 {
5 if (ct < max(ct))
6 {
7 c.f[ct] = charmm-eval(Overlay c −→ template[ct])
8 }
9 elseif (ct == max(ct))
10 {
11 for(j = 0;j < ct(max);j + +)
12 {
13 c.f[j] = charmm-eval(Overlay c −→ template[j])
14 }
12 }
13 else
14 {
15 c.f[0] = charmm-eval(Overlay c −→ Panmetic-template)
16 }
12 }

Table 4.1 Pseudo code for evaluation of partial solutions.

Furthermore, storing the best chromosome during algorithm execution and tourna-

ment selection must also be modified to account for having multiple competitive

templates. Tournament selection is illustrated in Table 4.3.

In addition to having multiple competitive templates, the algorithm must be

able to maintain a panmetic (bitwise dominate) competitive template. This adds to

having evaluation of not only each competitive template, but an extra evaluation of

a panmetic competitive template. Furthermore, all evaluations are increased by one

evaluation and the operation for generating the competitive templates must include
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Identifier Sweeps Evolving CT Type CT provided?
CT chosen
c 7 t r 0
Identifier Obj 1 Obj 2 Obj 3 Obj 4 Obj 5
Multiobjective chosen
m 1 2
m 3 4 5

Table 4.2 Competitive Template and Multiple Objective settings for the fmGA.
This Table is describe more thoroughly in Appendix E.

a featured panmetic competitive template generation tool. The best stored is a

rotating best (See Table 4.6), where the dominate bests are kept (See Table 4.5) –

be they an ordinary or panmetic competitive template.

To initiate the detailed design changes, a extra file is generated to define the

different competitive templates to be utilized. This file is illustrated in Table 4.2

and is more clearly specified in Appendix E. A competitive template is declared by

placing a ’c’ as the first single character on a line. For the algorithm to run, there

must be at least one type of competitive template specified. For each competitive

template identified the researcher must specify the number of sweeps, if it is to be an

evolving competitive template, the type of competitive template to generate, and if

the competitive template is being supplied. The number of sweeps identify how many

times to sweep the competitive template upon generation. If a competitive template

is non-evolving, it is set not to change during execution. Although other types of

secondary structure exist – competitive template generation consists of the first two

listed in Table 4.4 and random (r). Because POLY folds into an Alpha-helix structure

the Alpha-helix was chosen as one model from which to build a competitive template.

Furthermore, the Beta sheet was chosen to as a test for negative conformity. The

final option allows the researcher to provide a competitive template within the option

file. Each time a competitive template line is declared, a new competitive template

is being added to the total number of competitive templates for that experiment (i.e.

there is no limit to the possible number of competitive templates).
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# Passed are two population members c1 and c2.
1 Tournament(c1,c2)
2 partial solution c1, c2

3 {
4 wins0 = 0; wins2 = 0
5 for(j = 0;j < ct(max);j + +)
6 {
7 if (c1.f [j] < c2.f [j])
8 {
9 wins1 = wins1 + 1
10 }
11 else if (c2.f [j] < c1.f [j])
12 {
13 wins2 = wins2 + 1
14 }
15 # add nothing if it is a tie
16 }
17 i = RandInt(0,1)
18 if (wins2 < wins1)
19 {
20 return c1 as winner
21 }
22 if (wins1 < wins2)
23 {
24 return c2 as winner
25 }
26 else
27 {
28 switch(i)
29 case 0:
30 return c1 as winner
31 break
32 case 1:
33 return c2 as winner
34 break
35 }
36 }

Table 4.3 Pseudo code for tournament selection.

4-5



Secondary Structures Handedness Residues per Turn
1 Alpha Helix (a) Right 3.6
2 Beta Sheet (b) Left Twist
3 Beta Strand Right 2.3

Table 4.4 Secondary Structures useful in matching onto polypeptides structures.
Note 1 and 2 are used for competitive template generation. [12]

# Store the best and overall best after testing for it.
1 Best(c,ct)
2 partial solution c
3 int ct
4 {
5 if (OverallBest.f < template[ct].f)
6 {
7 OverallBest ←− (Overlay c −→ template[ct])
8 Best[ct] ←− (Overlay c −→ template[ct])
9 }
10 else if (Best[ct].f < template[ct].f)
11 {
12 Best[ct] ←− (Overlay c −→ template[ct])
13 }
14 }

Table 4.5 Pseudo code for finding and storing the best fitness.
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# Store the best and overall best after testing for it.
1 RotateBestIn()
2 {
3 if (Panmetic)
4 {
5 worst = MinDBL
6 k = 0
7 for(j = 10;j < ct(max);j + +)
8 {
9 if (Best[j].f > worst )
10 {
11 worst = Best[j].f
12 k = j
13 }
14 }
15 for(j = 10;j < ct(max);j + +)
16 {
17 if ( Best[j].f > worst )
18 {
19 template[j] ←− Panmetic
20 else
21 {
22 template[j] ←− Best[j]
23 }
24 }
25 else if (Best[ct].f < template[ct].f)
26 {
27 for(j = 10;j < ct(max);j + +)
28 {
29 template[j] ←− Best[j]
30 }
31 }
32 }

Table 4.6 Pseudo code for rotating competitive template mechanism.
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4.2.2 Farming Model. The farming model code modification is motivated

by having the need for 2 parallel models working as one. The farming model is a

simple dynamic load balancing implementation of the juxtaposition phase’s evalua-

tion function. See Section 3.7 for a complete description. Upon start-up, the fmGA

initializes a pool of processors that is used in parallel to evaluate the fitness func-

tion of all new partial population members during phase of the algorithm. The only

stipulation is that the total number of compute nodes must divide evenly by the

number of algorithm nodes. For example, in the Figure 4.1 each Algorithm node is

represented by a square and circles represent compute nodes. The configuration on

the left is showing a configuration of one Algorithm node (which runs the fmGA) and

three compute nodes. When this Algorithm node reaches the cut and splice phase

within the juxtaposition phase, it builds the new population and then dynamically

(according to the currently population size) divides up the evaluations between the

three compute nodes - all left over evaluations are performed by the Algorithm Node.

The configuration on the right side of Figure 4.1 shows how the communication oc-

curs between Algorithm nodes plus from Algorithm node to compute nodes. This

communication is essential when the Algorithm nodes are working together from a

common population. In addition, there is another stipulation that no two Algorithm

nodes can have a common compute node.
 

Figure 4.1 Farming model visualization of communication between algorithm
nodes and farm or compute nodes. Algorithm nodes are represented
by the square boxes and Compute nodes are the Ovals.

The farming model, built in code using message passing interface (MPI), follows

the visual representation discussed above. The most important part is initializing

the groups correctly. Once this is complete, all following MPI calls are the same
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#
1 Initialize Farms()
2 {
3 NumNodes = MPIcomm size command
4 NumFarms = Specified in Option File (Table 5.3)
5 NumFarmsPerAlg = Floor(NumFarms/NumAlg)
6 for (k = 0;k < NumFarmsPerAlg;k + +)
7 {
8 alg proc[k] = k*(NumFarmsPerAlg+1)
9 if (k*(NumFarmsPerAlg+1) == this node’s world number
10 {
11 my group = k
12 IamBoss = TRUE
13 }
14 for (j = 0;j < NumFarmsPerAlg + 1);j + +)
15 {
16 farm proc[k].ranks[j] = k*(NumFarmsPerAlg+1) + j
17 if ((k*(NumFarmPerAlg+1)+j) == this node’s world number) && j > 0)
18 {
19 my group = k
20 IamFarm = TRUE
21 }
22 }
23 }

Table 4.7 Pseudo code for evaluation of partial solutions.

with one modification to the “group” identifier. Normally, all sends and receives

are channelled to the entire group, MPIWORLD. Now, all calls are either to the a

configured Algorithm Group or Farm Group. Furthermore, each farm group can only

communicate with one algorithm node. The pseudo code for initialization is found in

Table 4.7 and Figure 4.2 illustrates how the nodes are grouped. Communication only

occur within a group. It is this restriction that forces the group relationships defined

for this model. Further, it is easy to see that Algorithm nodes communicate only

with Algorithm nodes and Farm nodes within that Algorithm node’s farm group.

Furthermore, Farm nodes can only communicate with nodes that are within its own

farm group – this always includes one Algorithm node.
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Algorithm Group 

Farm Groups 

Figure 4.2 Visualization of nodes grouped into Algorithm and Farm arrays.

4.2.3 Building Block Analysis. No special implementation or code mod-

ifications were necessary for running these experiments. The parameters varied in

this experiment were population size and building block size. The population size

needed to be changed throughout the experimentation because as the building block

sizes increased, so did the population size. Moreover, some of the building block

sizes caused the population to grow very large which in turn causes system degra-

dation. Therefore, the n a value is lowered as the building block size rises to keep

the population size to a reasonable number. This population size adjustment allows

the algorithm to complete within a shorter length of time. The range of n a values

used are [10,50].

4.2.4 Protein 3D File Generation. The Protein Data Bank (PDB) format

is well known in the biochemistry world. For purposes of generating protein confor-

mations that can be viewed post-mortem, code was inserted to generate a PDB file

after each building block size test. These PDB files contain cartesian coordinates of

each atom which can be viewed with 3D molecular modelling software like Visual

Molecular Dynamics (VMD). The implementation of code is rather simple; however,

there is a need for precise placement of this code. Directly following an evaluation

of a particular conformation, the structures needed in generating the PDB have the

corresponding coordinates associated with that conformation evaluation. It is at
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that time the PDB must be generated. In other words, the best conformation must

be reevaluated just before generating the PDB for that particular conformation.

4.2.5 Multiple Objective. Code modifications were essential and extreme

for the integration of the multiple objective approach. Furthermore, much time went

in to the design of a modular Software Engineering approach to this implementation.

Additionally, it was fortunate that there was existing code that striped pareto front

points from formatted results. This same code was used in Multiobjective messy

GA-II (MOMGA-II) [104]. By using existing code, focus was placed on the design

of the fmGAMO and not on pareto front software.

The MOfmGA executes using the same basic algorithm structure as the fmGA.

The differences are slight. First, the MOfmGA automatically uses a multiple com-

petitive template design where each objective function is assigned a competitive

template. This competitive template grows to optimize that particular objective

function and each population member is overlayed onto this competitive template

before evaluation. Secondly, as the Juxtapositional Phase completes population

members (after overlaying onto a competitive template if necessary) they are writ-

ten to a file for post mortem processing for pareto front points. Finally, after saving

each Best as the next competitive template, the best found chromosomes are written

out into a PDB file for viewing of the structure after completion or during execution

of the program (Discussed in Section 4.2.4).

The general flow of the program is easy to follow; however, once the multob-

jective part of the algorithm is applied, the solution determination is a little more

complex. For this part of the code, on top of the parameters already discussed,

we have to add in decision variables and objective functions. In addition to these

variables, an implementation of multiple competitive templates in both separate and

panmetic approaches are added as variables. The additional parameters are defined

as follows:
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Decision Variables: These variables are dependant upon the number of dihedral

angles needed to define a protein. Worst case, this would the n-3 dihedral an-

gles where n is the number of atoms making up a protein. Fortunately, many

dihedral angles are known to biochemists. Therefore, these angles can be set

to the known angle and that particular dihedral angle can be removed from

the decision variable parameter list. Ultimately, these decision variables refer-

ence back to the original angles defined within each residue thereby allowing

calculation of the Objective Functions.

Objective Functions: Objective Functions for this particular design are held to

be any combination of summations found in the fitness function. Moreover,

the CHARMm model is built from numerous summations of energies found

from designated configurations of atoms. The MOP design decomposes the

CHARMm model into five different and separate objective functions allowing

the researcher to select any combination of these functions – including a single

objective approach using all five functions. Selection is set in a configuration

file parsed by the algorithm before running a set of experiments.

[CHARMm] The energy function (Equation 2.7) as a whole sums the bond,

angle, torsion, improper dihedral, water-water and van-der-waals potential en-

ergy between every atom. Moreover, all energy for both bonded and non-

bonded forces are added. However, the MOP changes the sum by decomposing

the energy function into five separate objective functions plus a fixed energy

value. The fixed energy value is due to the assumed rigid structure of the

protein of the fixed model chosen (bond length and bond angles between every

three atoms are fixed to optimal). This fixed energy is to be accounted for

within one of the objectives. In this investigation, the fixed energy is included

in Objective 1. Within the MOfmGA code there are eight objectives that can

be selectively added together to form any combination of five objectives. The

nine functions are listed as follows:
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1. Fixed Energy

2. Non-Bonded Energy

3. Non-Bonded Energy One-Four

4. Dependent Bond Energy

5. Independent Bond Energy

6. Dependent Angle Energy

7. Independent Angle Energy

8. Dependent Dihedral Energy

9. Independent Dihedral Energy

10. Independent Improper Dihedral Energy

Notice that there are ten functions listed. This is because the CHARMm energy

function provides nine functions; however, the last function, improper dihedral

energy, is not being utilized in these experiments because it is known to be

insignificant compared to the cost of evaluation. The following five objectives

were built from the nine available objectives listed above. Section of function

is based on one criteria - type of bond. If the function is non-bonded energy

related, it is added to objective 1. Following this, if the function is bonded

energy related, it is added to objective 2. The fixed energy is always added to

objective 1, as discussed earlier. The separation of the bonded and non-bonded

energy function is not without reason. This selection allows the algorithm to

optimize two meaningful natures: Physics and Chemistry. The Physics of the

PSP problem focuses on keeping correct the coulomb interactions and steric

anatomy of the protein. Whereas, the Chemistry of the PSP problem keeps

correct the classical description of Chemistry. Moreover, dihedral angle, bond

lengths, and bond angle energies are the focus of this objective.

• Objective1
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– ONE: Fixed and Non-Bonded Energy

– TWO: Non-Bonded Energy One-Four Energy

• Objective2

– THREE: Dependent Bond Energy and Independent Bond Energy

– FOUR: Dependent Angle Energy and Independent Angle Energy

– FIVE: Dependent Dihedral Energy and Independent Dihedral Energy

Essential modifications to the fitness function was the first to be changed. Calls

to evaluate partial solutions had to incorporate the objective to evaluate. Objective

declarations are accepted in the file used for defining multiple competitive templates.

This is illustrated in Table 4.2. In addition to having these options, the researcher

can also assign these 9 objectives to any of the 5 optional objectives within the code.

Additionally, each chromosome needs to have fitness values associated with

each objective and competitive template. This means that the MOfmGA can han-

dle both the multiple competitive templates and multiple objective functions and

population member structures need to be modified for such type of experiments.

Additionally, changes to storing the best/Overall best per Objective, evaluation per

objective and tournament selection all needed to be made in support of the multiple

objective code.

Modifications to evaluation calls were similar to the modifications made when

adding multiple competitive templates; however, now the objective number must be

traced. With few exceptions the code segment found in Table 4.8 wrappers each

evaluation call within the single objective code.

This piece of code implies that for every index referring to a competitive tem-

plate, it must be replaced by the ”objective number*ct + objective number.” This

is true. In addition to this change, tournament selection must also add a section of

code similar to what is found in Table 4.3 to account for all objective competitive
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for (r = 0;r < num of objectives;r + +)
{

## Original Evaluation Call (where ct = objective number*ct + objective number)
}

Table 4.8 Pseudo code modifying the evaluation function when moving from the
single to multiple objective code.

4 wins0 = 0; wins2 = 0
4.1 for(i = 0;i < obj(max);i + +)
4.2 {
5 for(k = 0;k < ct(max);k + +)
6 {
6.1 j = i*k + i
7 if (c1.f [j] < c2.f [j])
8 {
9 wins1 = wins1 + 1
10 }
11 else if (c2.f [j] < c1.f [j])
12 {
13 wins2 = wins2 + 1
14 }
15 # add nothing if it is a tie
16 }
16.1 }

Table 4.9 Pseudo code for multiobjective tournament selection.

template evaluations. This is illustrated by replacing lines 4∼16 in Table 4.3 with

lines 4∼16.1 in Table 4.9.

Finally, a mechanism was built to generate points representing population

members at the end of the juxtapositional phase. The file containing the points

representing the population are parsed for pareto dominant points at the end of the

search. The process of finding pareto dominate points is defined in Definition 4 in

Appendix K. The idea would be to get points that are on “Pareto Optimal” front

(Definition 5 in Appendix K) [97]. The points are generated with the associated

dihedral angles for backwards conformation visualization characterization; however,

the objective functions are used for pareto dominance selection.
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# Technique
1 A separate plot for each model in the ensemble
2 Separate plots for just the Gly and Pro residues
3 Separate plots for each of the 20 different amino acid types
4 Separate plots for each residue in the sequence

Table 4.10 List of Ramachandran plot variations.

4.2.6 Ramachandran. Ramachandran plots may be generated by the four

techniques found in Table 4.10. A good dissussion of Ramachandran plot generation

and usage can be found in [29].

Of these four Ramachandran techniques listed in Table 4.10, this investigation

uses technique number 3 for implementation. The design of Ramachandran angle

restriction is an involved process. The restriction of angles for each residue type

involved creating a new C structure carrying information about each dihedral angle’s

type of angle and residue. Upon a call to compute a dihedral angle in radians

(RAD), this structure maps that dihedral angle having a defined angle and residue

type to a predefined range. There are three levels of ranges: Normal, Optimistic

and Pessimistic. Worksheets establishing each range can be found in Appendix C.

Illustrated in Figure 4.3 are a few mappings that might occur for an optimistical

dihedral angle computation.

4.2.7 RMS difference. The last mechanism added to this investigation

was the root mean squared difference calculations. Given an accepted solution to

a particular proteins final folded state, this calculation determines the distance, in

angstroms (Å)10−10m, a solution is from the accepted solution. There are two valid

ways of calculating the RMS difference between proteins: 1) dihedral angle difference

and 2) Cartesian coordinate difference. Both are implemented in this investigation.

Equation 4.2 is used to calculate the RMS difference of the independent dihedral

angles where Dθ(i) is dihedral number i within the found conformation and Dtrueθ(i)

is the dihedral angle number i within the accepted true conformation. Moreover,
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Figure 4.3 An example of how the mapping of the Ramachandran plots works in
with the algorithm. For each evaluation, the mapping must be accom-
plished for each dihedral interpretation. This is quite computationally
expensive.

Equation 4.1 is used to calculate the RMS difference of two structures where As(i) is

atom i from the test solution and At(i) is atom i from the accepted solution.

[32]

√√√√
n∑

i=1

(As(i).x− At(i).x)2 + (As(i).y − At(i).y)2 + (As(i).z − At(i).z)2 (4.1)

[74]

√√√√
n∑

i=1

(Dθ(i) −Dtrueθ(i))2 (4.2)

4.3 Software Engineering Approaches

The basic software engineering practices are enforced throughout the software

development. Academia produces much software that has little emphasis on main-

tainability, so was true with fmGA software previously used for solving the PSP

problem. In attempt to forge better software, the current software was studied

intensively before modifications were made. Upon recognizing the needed modifica-
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tions c structs were built and an entire revamping of the current software began. The

Specification Phase was obscure because there was only I who was both the system

builder and client – thus, no formal specification documents was drawn. However,

a data flow diagram was rendered for ideal understanding of current software exe-

cution and desired new algorithm flow. This design phase is illustrated by the Flow

Diagram in Figure 3.11. The Project planning phase was rather short because of

time constraints. The thrust of the effort was to make the program more modular

and be able to more easily add proteins to the search. These goals were met. Finally,

the testing for the program was accomplished and found to be both more efficient

and effective than the previous software.

4.4 Summary

This chapter discussed the design methodology of code for experiments con-

ducted in this investigation. The Multiple competitive template design is covered

first, followed by integrations of the farming model and PDB file generation. Next is

discussed the feature design for the MOfmGA and finally, design of the Ramachan-

dran constraints and RMS difference calculation integration is covered. A few ex-

amples of mapping and pseudo code were given to show the design complexity and

allow for reproducibility. Chapter 5 discusses the design of experiments and pre-

sentation and statistical methods used; furthermore, justification for experimental

design, definitions the system and components under test, performance evaluation

terminology, techniques and metrics are clarified.
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V. Design of Experiments

Algorithm effectiveness and efficiency are the key criteria defining generic perfor-

mance analysis of GAs. Effectiveness is quite an elusive metric for the PSP problem,

but efficiency is not. This chapter discusses the study of both effectiveness and

efficiency for the MOfmGA when used to solve the PSP problem. It presents justi-

fication of experimental design, system and components under test, system services,

performance metrics, system and workload parameters, algorithm factors, justifi-

cation for evaluation techniques, workload selection, hypothesis and presentation

techniques.

5.1 Justification of experimental design

The experiments described in this chapter are selected to test both effectiveness

and efficiency of the algorithm. A multiple objective experiment is the focal point

of the thesis investigation because this experiment brings a new technique, meaning

and validation to solving the PSP problem. Specific experiments testing effectiveness

are the following: competitive template generation experiment, building block size

experiment, Ramachandran constraint experiment and multiobjective experiment.

Efficiency tested using the Farming Model experiment. Finally, extra mechanism to

help judge the “goodness” of solutions found are the following: RMS difference and

PDB file generation.

5.1.0.1 Competitive template experiment. These selected experiments

are innovative techniques targeting the improvement of the fmGA. The fmGA ex-

plicitly manipulates building blocks (BB) in search of the global optimum and uses

the idea of speciation through successive phases of the algorithm. The fmGA uses

a competitive template, which is a fully specified population member, to evaluate

these partially defined strings or building blocks. By focusing on modifying the pro-

cess that the fmGA uses to create and update the competitive template during the
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execution of the algorithm the algorithm’s effectiveness is increased. Therefore, the

competitive template generation experiment is a good choice to test this hypothesis.

5.1.0.2 Building Block experiment. The building block (BB) analysis

is performed in an attempt to identify the building block sizes that result in finding

better solutions for POLY. A BB is a partial string representing bits from one,

some, or all of the dihedral angles that each chromosome represents. The BBs are

not restricted to be contiguous bits from the chromosomes but instead can be non-

contiguous bits from the chromosome. Therefore if one purely looks at just one BB

it may represent a whole dihedral angle or just various bits of multiple angles.

The BB analysis conducted covers a variety of BB sizes and compares the

results to determine which size produces the best statistical results. One expects a

BB size of 35 bits to yield the best due to the alpha helix [12] structure of POLY.

Alpha helix proteins are known a priori to have 3.5 residues per turn [8].

5.1.0.3 Ramachandran experiment. Search algorithms having con-

strains on search space by a feasibility function statistically, overtime, must find

better solutions. Moreover, solutions where fitness is known to be bad are removed.

This premise also applies to this experiment, by constraining the search space to

have only feasible solutions it is expected that solutions found must be better.

5.1.0.4 Multobjective experiment. In the single objective implemen-

tation of the fmGA, the CHARMm energy function is utilized and consists of a

summation of several major terms. To utilize a multiobjective approach, the ob-

jectives are drawn from each of the terms within the CHARMm energy function.

Specifically, the energy function is broken down into the connected (bonded) and

non-connected (non-bonded) atom energies. These objectives are selected to de-

compose the problem into two goals to optimize: the Chemistry and Physics. It is
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expected that by optimizing for each of these goals separately results found are more

meaningful and overall better.

5.1.0.5 Farming Model. Alternate efficiency models, like the island

model, have been used in the past; however these other models do not confront solely

the computation time related to the fitness function. It is due to the complexities

associated with the energy fitness function calculation and the fact that the fitness

calculation is in the critical path of execution, the addition of a farming model is

proposed. Farming out the fitness calculations to another set of slave processors

allows for a decrease in the overall processing time as long as the computation time

is greater than the communications time required. As the slave processors calculate

fitness values the masters can do the same or conduct other computations. This

experiment is expected to result in better overall efficiency of the algorithm run

time.

5.2 System Under Test

The system under test (SUT) is AFIT’s fmGA. The fmGA is programmed

to run in serial and parallel on the following AFIT computer systems: Pile of PCs

(PPCs), Cluster of Workstations (COWs) and Networks of Workstations (NOWs).

The clusters of computers used in this investigation are defined in Appendix D.

Computational requirements for simulation of a protein can be found in Section 3.3

and no computer system is available to perform to this requirement. It is for this

reason that we use a stochastic search like the fmGA.

5.3 Component Under Study

When evaluating system performance it is easier to decompose the metrics into

components so each component is isolated for a more accurate analysis. When mea-

suring components, a unit of measure must be defined. Effectiveness and efficiency
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are isolated performance metrics employed in this investigation. They are defined

as:

5.3.1 Effectiveness Components. The Components Under Test (CUS) for

effectiveness are the fmGA’s competitive template generation method, building block

sizes at cut-off generations, and the number of objective used within the fmGA.

Each component studies a different segment of the algorithm. The fmGA utilizes

the competitive template throughout the algorithm; however, competitive template

generation is only engaged within the start-up of the algorithm. Building block

cutoff sizes are exclusively used during the Building Block Filtering Phase as the

block size to reduce all population members before moving forward in the algorithm.

Minimizating multiple objectives aims to solve the PSP problem by separating the

problem into more meaningful partitions and solving for each of these partitions.

Having multiple objectives changes the dynamics of the fmGA where the population

becomes more diverse because the algorithm now keeps fit chromosomes for multiple

objectives. Each one of these mechanisms is judged by how “good” the fitness of

the overall best chromosome found. Fitness is calculated by the CHARMm energy

model and results in units of kcal/mol.

5.3.2 Efficiency Component. The Component Under Test (CUT) for effi-

ciency is how farming out the fitness function calculation makes good use of com-

plimentary compute nodes. The farming out of a computationally expensive fitness

evaluation should realize speed up in efficiency without affecting the effectiveness

[35]. Wall clock time is measure in system clock time to complete in units of sec-

onds.

5.4 System Services

The fmGA searches a constrained solution space, as discussed in Section 2.2.2,

for lower energy values achieved by the protein at different conformations. Finding
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the optimum fitness is not a realistic goal because the fmGA is a stochastic search

algorithm; therefore, semi-optimal solutions are sought. The system allows a re-

searcher to select from among numerous options. This includes but is not limited

to the test protein, the number of epochs, building block size, and competitive tem-

plate. The entire list of options can be found in Tables 5.1, 5.3, 5.4 and 4.2. It

should be noted that the software can be written to be responsive to other variables

as well; however, for each variable added to the options file, less memory is available

for the algorithm itself.

As one can see by the number of options in Tables 5.1, 5.3 and 5.4, it would

be difficult, if not impossible, to conduct a full factorial number of experiments with

all the different settings. Options listed in bold are varied in the experiments. In

addition, a new configuration file has been added extending these options further.

This is illustrated in Table 4.2. Although the new options in Table 4.2 are not difficult

to understand, Appendix E has been included to explain this file more thoroughly.

The new options file makes changing objective and competitive template variables

easier than if these options had been added directly into the original options file.

The number of possible outcomes for each experiment is the same size as the

solution space (described in Section 2.2.2). It is known that the fmGA attempts

to search the energy landscape in pursuit of finding a deep valley where a better

conformation may be; however, there is no guarantee that it succeeds in finding a

deep valley every experiment. Furthermore, it is known that the fmGA is a stochastic

algorithm and searches with probability of error in finding the optimal solution.

Every run yields similar, but different results. The fmGA completes each time when

it finishes the number defined, by the research, generations and experiments.

5.5 Design Discussion

The design of the experiments is simply explained. Each experiment varied only

one parameter. All other variables are kept the same for each related experiment.
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Label in Configuration File = Description of setting and acceptable values
Random Seed = Seed setting for computer at start of experiment
Experiments = number of experiments to run

String Length = Number of bits representing a complete chromosome
Block Size (min max) = The Range of Block sizes to use for experiments

Genetic Alphabet = ’01’ is specified for a binary alphabet
Encoding = 0=Binary code 1=Gray

Shuffle Number = Number of times population is mixed before selection
Cut Probability = (0 ≤ Number ≤ 1):Probability of cutting a member

Splice Probability = (0 ≤ Number ≤ 1):Probability of splicing a member
Overflow (> 1.0) = Coefficient of string growtha

Sweeps = Number of sweeps each CT gets after creationb

Competitive Template Guesses = Number of tries to generate a good CT
Secondary Structure (SS) Fraction = Fraction of population is needed to identify SS pattern

Good Population Fraction = Enriches population until this good memberc %
Pop Type 0-C 1-S 2-B 3-A = Type of population member to enrich the populationd

Initial Energy Cutoff Value = Cut-off fitness value - Fitness eval stopping criteria
Protein Structured Used = Protein used in experiment (POLY or MET)

Number of Residues in Protein = Number of residues in Proteine

Heterogeneous = Yes/No if computer systems are Heterogeneous

achromosome lengths are set by the string length during the Cut and Splice function string may grow
larger than this number. The Overflow is selected to estimate how large the researcher thinks a string
might reach.

bThese are used during non-multiple CT experiments.
cDuring the primordial phase the percentage of good population members is monitored and when the

fraction of good population members divided by the population size falls below this given fraction, good
population members are produced to replace bad ones until the percentage has returned to the specified
size.

dWhen good population members are being added in the Primordial Phase, the newly generated
population members are added according to a particular type. (0=S or Randomly pick 1,2 or 3 for
member Creation, 1=C or Normal Sweeping of bad member, 2=B or Beta Sheet member creation, 3=A
or Alpha helix member creation).

eThe number of residues indicated in the option file is different than the total number of variable
dihedral angles

Table 5.1 Options for the fmGA
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Experiment Parameters
*Competitive Template generation method and number of competitive templates
Building Block building block cut-off sizes
Farming Model algorithm nodes and compute nodes
Multiobjective generation method and number of competitive templates
Feature experiment Single vs. Multiobjective (comparison of experiments noted with *)
Ramachandran variety of constraints set on dihedral angle

Table 5.2 Parameters for design

Furthermore, each experiment is run 10 times for statistical purposes. Parameters

used for each experiment are found in Table 5.2.

5.6 Performance Metric

The algorithm’s generic performance metric is two fold - time to converge

(efficiency) and the goodness of the found energy level (effectiveness). The fmGA uses

the CHARMm, version C22 (described in Section 2.5), model to calculate the energy

level of a protein in a particular conformation. The CHARMm energy model is an

example of a force field energy model measuring potential energy of the conformation.

Energy is measured in kcal/mol units. With this fitness function, lower energy equals

a better solution.

5.7 Parameters

All system and workload parameters are displayed in Table 5.5. In the following

sections a description of both system and workloads is presented.

5.7.1 System Parameters. AFIT’s fmGA was developed by previous AFIT

masters students [32][68] specifically to solve the PSP problem. These students con-

ducted numerous experiments using this particular fmGA providing baseline data

from which to compare current results. Previous test revealed advantageous pop-

ulation sizes, number of sweeps [74] and number of generations to employ [42]. In

addition to these parameters, doping the population with a percentage of good pop-
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Label in Configuration File = Description of setting and acceptable values
Ramachandran Plot = Specifies if Ramachandran constraints are useda

Population Recombination = Specifies type of recombination method to use
Initialization Flag = Specifies type of initial population members to createb

Distinct Competitive Templates = Specifies CT is supplied as first and best CT found
Competitive Template Supplied = Yes/No if CT is given for use experiment

Global Selection = Specifies if Global selection is applied (pfmga)
Migration = Specifies if Migration is applied (pfmga)

Verbose = Yes/No if Verbose mode is on or off (debugging)
Energy Farms = Number of slave nodes available to farm fitness evals

Panmetic = Panmetic CT implimented
Conjugate Gradient = (0 ≤ Number ≤ 1):Probability of applying CG

Baldwinian or Lamarchkian (B/L) = B=Baldwinian, L=Lamarchkian, Y=Both, N=Neither
Probablity B/L = (0 ≤ Number ≤ 1):Probability of applying Baldwinian

RMS Calculation = A=All atom diff, B=Backbone atom diff, N=Turn Off
Primordial Generations = 200 200 200 200 200c

Total Generations = 400 400 400 400 400d

N a = 50 50 50 50 50e

aRamachandran Plots can be N=Not Used, O=Optimistically applied, or P=Pessimistically applied.
See Appendix C for defined optimistic and pessimistic Ramachandran values.

bInitial population members may be either R=Random or C=Complimented.
cSpecifies how many primordial generations are conducted before moving to the next Phase for each

block size specified above in the block size option.
dSpecifies the total number of generations used in each phase. Implying that the generations for the

Juxtapositional Phase is equal to the total less the number of Primordial Phase generations.
eSpecifies the n a in the population sizing formula (Equation 3.8).

Table 5.3 Options for the fmGA

5-8



Cut-off generationa String lengthb Thresholdc

0 220 200
13 180 140
39 148 128
45 125 105
51 109 99
72 94 83
96 26 20
97 25 19
98 24 18
99 23 17

103 22 16
105 21 15
107 20d 14
112 19d 13
117 18d 12
122 17d 11
127 16d 10

aThe cut-off generation is the generation at which BBF phase is conducted.
bThis is the size of every string after the BBF phase is completed.
cThe threshold is how far apart the BBF phase enforces a Hamming Code distance between partial

solutions.
dThe last string lengths indicated must correspond to the building block size window chosen. For

example, the Minimum and Maximum block sizes are 16 and 20 respectively – meaning that the min,
max and all sizes in between must be specified in the last rows of the string-length column as they are in
this example.

Table 5.4 Input Schedule for the fmGA
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Selected Parameters

System Workload
fmGA MET

Serial POLY
Parallel

fmMOGA
Building Block Size (13 levels)
Competitive Template Generations

Alpha Helix
Beta-Sheet
Random
Multiple types
Panmetic
No Sweeps

Multi Objective
Two Objectives

Ramachandran Plots (3 levels)

Table 5.5 System and Workload Parameters

ulation members had also been studied [74]. This work is followed by the multiple

competitive template, building block size, farming model, Ramachandran and mul-

tiobjective experiments. Comparisons can be drawn between these previous studies

and this thesis effort. System parameters for this investigation include the fmGA,

building block sizes, competitive template generation techniques, number of objec-

tives and Ramachandran plots. Additionally, drawing on past results of parameter

setting, the number of sweeps and generational schedule (discussed in Section 3.7)

is set to optimal.

5.7.2 Workload Parameters. Two proteins are specifically chosen as the

workload (POLY and MET). These define the atom organization that the fmGA

uses as it searches for a good fitness. We pick two proteins with entirely different

geometric conformations for a comparison. Both are relatively small proteins, but

the POLY protein is a bit larger - having 14 amino acids compared to MET’s 5.

Evaluating this larger protein should allow us to speculate on how long it might
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take the fmGA to converge on an answer for even larger proteins. Furthermore,

POLY has an alpha helix secondary structure which allows us to apply specialized

techniques in finding special secondary structures.

5.8 Algorithm Factors

Performance factors in this experiment are the workload parameters, com-

petitive template variations, Multi Objectives, and new Ramachandran plots [26].

Changing the design method of our competitive template allows us to compare pre-

vious implementations of this fmGA with those proposed in this experiment. Addi-

tionally, having multiple proteins allows us to gather fitness on two entirely different

protein structure. If we observe improvement using our new competitive template

which uses domain information, we may also observe that the improvement might

be correlated between the competitive template’s geometric configuration and the

geometric configuration of the protein under test.

Where k is the number of factors, a full factorial experiment would require

n =
∏k

i=1 [47] experiments. The total number of experiments would be 2 (Pro-

tein) x 3 (Levels of Ramachandran plots) x 6 (Competitive Template Generation

Method) x 2 (Type of Objective) x 13 (Building Block Sizes) x 2 (Parallel/Serial)

equating to 1872 experiments. Additionally, 10 replications of each experiment must

be performed totaling 18720 experiments. This was an extraordinary number of ex-

periments to accomplish; therefore, each experiment was conducted and compared

separately – only comparing the final best solutions. Moreover, experimental analy-

sis for multiobjective plus competitive template generation was conducted separately

from single objective plus competitive template generation. Parallel and serial ex-

periments were conducted together for they targeted efficiency, not effectiveness.

Ramachandran experimentation and building block sizes experiments are all con-

ducted separately. The idea was to fine tune the fmGA in finding good solutions for

these two proteins: POLY and MET.

5-11



5.9 Hypothesis

The hypothesis of the outcome of these experiments is that the multiple ob-

jective approach using multiple competitive templates acquires the best effectiveness

results. Furthermore, the farming model is expected to show that speedup can be

obtained by farming out the fitness function because it is the computational bot-

tleneck. In addition to results of these experiments, it is expected that using the

constraints of Ramachandran plots is advantageous to finding even better solutions.

Furthermore, The accuracy of the tests should be sufficient to allow us to determine

if the new implementation is better than previous versions.

5.10 Evaluation Techniques

Sufficient time is available to implement changes to the fmGA and run outlined

experiments on both proteins (MET and POLY). Additionally, tools are in place to

accomplish any code modifications required.

Techniques such as the RMS difference calculation and graphical visualization

comparison allow one to identify and quantify the amount of differences between

the actual and experimentally derived geometric structures. Proteins are known to

fold into different shapes even though they are made of the same exact atoms and

bonds. Therefore, it is nearly impossible for us to use our experimental conclusions

supported by X-ray Crystallography to establish, without any doubt, that we have

found the correct geometric conformation for a particular protein. Moreover, this

effort is two fold in an attempt to find acceptable solutions to the PSP problem and

evaluating the fmGA’s ability to be adapted to hard problems like the PSP problem.

5.11 Workload Selection

Selecting the workload for the system is procedural in this experiment. Any

protein selected would exercise all the services; however, if we choose a large protein

it would have overloaded our SUT because of the combinatorics described in Section
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Protein Residues(Sequence) 2ndary Structs ∼Atoms Search Space
METa 5 (Tyr-Gly-Gly-Phe-Met) none 87 21615

POLYa 14 (Ala-Ala-. . .-Ala) α− helix 182 23420

Tufstin 4 (Thr-Lys-Pro-Arg) none 86 21596

BETAb 16 ((Ala−Glu)2 − (Ala− Lys)2)2 β − sheet ∼176 23325

Cramblin 46 (See PDB 1AB1) 2-β-sheets, 2-α-helix 329 26213

Protein L 78 (See [59]) β-strand,α-helix 605 211457

aInitiating the workload proteins. Future research may include others listed in table.
bhas a characteristic β-sheet circular dichroism spectrum in water. Upon the addition of salt, the

peptide spontaneously assembles to form a macroscopic membrane. [103]

Table 5.6 List of possible workload parameters along with their associated search
space.

2.2.2. Some examples of proteins and their associated search space are listed in Table

5.6. In addition, the new system parameters needed to be exercised on not one, but

two separate workloads. Therefore, two small proteins were chosen. A larger protein

would take a much longer evaluation time; however, might add some more insight

to solving the problem. Yet, for this investigation, these two small proteins are

appropriate for timeliness and level of detail required. The selection of MET and

POLY are sufficient to reach the thesis goals stated in Section 1.2.

5.12 Experimental Design

1. The first experimental design is a full factorial experiment of competitive tem-

plate generation methods. Our first variant consists of changing our method

of generating the competitive template. The second variant is a choice of

proteins. This experiment is accomplished twice; however, the results of the

second is provided in this investigation. The experiment’s first tool selection is

the original fmGA and the second tool is the MOfmGA. Accomplishing both

these experiments gave insight to new code capabilities and correctness. This

met Objectives 2 and 3 of goals outlined in Section 1.2

2. The second experimental design is a full factorial experiment of parallel/serial

mode of the fmGA. The only variant is that of using parallel versus serial mode
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and validating that the fitness does not change when evaluating on different

computer nodes. This met Objective 2 of goals outlined in Section 1.2.

3. The third experiment design is a full factorial experiment of multi objective

plus competitive template generation techniques. The first variant consists of

changing the competitive template generations techniques in conjunction with

splitting the objectives. These experiments can be compared to the single

objective in experimental design one. This met Objective 3 of goals outlined

in Section 1.2

4. The last experimental design is a full factorial experiment of Ramachandran

plots. The first variant is that of the three levels of the Ramachandran plots

(Optimistic, Pessimistic and none). Details of these values can be found in

Appendix C. The second variant is the protein selection for evaluated. This

met Objective 4 of goals outlined in Section 1.2

Accordingly, each experiment is run 10 times. This number is suggested by

[47] as a good number from which to be able to draw results. To estimate the

experimental errors, we use the student-t distribution analysis, paired observations

test and the Kruskal-Wallis test [32]. In identifying which method is considered as

“better”, a difference of systems is used. This met Objective 6 of goals outlined in

Section 1.2

5.13 Analyze and Interpret results

After gathering the data, a regression analysis is conducted to identify the

relationship of the data (e.g. exponential, linear, logarithmic, etc). With the data

model identified, we can compare previous data [74] to the new data by testing

the differences between these samples and check for a zero mean using an unpaired

samples test. This difference analysis might also provide us with better insight

to how many observations should be collected if we want to be sure that any two

implementations are different.
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5.14 Statistical Techniques

5.14.1 Kruskal-Wallis. The Kruskal-Wallis H test is the main statistical

method used in for the determination if two samples are from the same population.

This test is primarily used when no knowledge of the type of distribution is known;

however, it can be shown that the sampling distribution of H is nearly a chi-squared

distribution with k− 1 degrees of freedom, given that N1, N2, . . . , Nk sum to at least

5 [93]. The definition of the Kruskal-Wallis H Test (H Test) is the following:

H =
12

N(N − 1)

k∑
i=1

R2
i

Nj

− 3(N + 1) (5.1)

• Given

k sample sizes N1, N2, . . . Nk ∴ N =
∑k

i=1 Ni

k samples are all ranked together according to size ∴ the ranks are R1, R2, . . . , Rk

Upon calculation of H using Equation 5.1, this value, H, is treated as though

it were a value of chi-square sampling distribution with the degrees of freedom(df) =

k-1. This nonparametric method for analysis of variance for one-way classification,

or one-factor experiments, and generalizations can be made [93].

5.14.2 t-test Paired/Unpaired Observations. A second statistical method

for an analysis of variance is the Student t-test. This test can be applied to both

paired and unpaired observations; however, the application for each is quite different

and they have much different meaning as to differences. [47]

• Paired Conducting n experiments on two different algorithms such that there

is a one-to-one correspondence between the ith test on algorithm A and the ith

on algorithm B. Two samples are treated as on sample of n pairs. Each pair’s

difference in fitness found is then computed and a confidence interval is con-

structed for this found difference. Confidence intervals including zero represent
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algorithms that are not different. This is useful if the number of experiments

were one – no distribution. However, this method does not include the vari-

ance per experiment making it an unfit model for these types of experiments.

Furthermore, this type of analysis help a researcher to determine if two paired

experiments are different excluding the variance in paired samples.

• Unpaired This analysis requires for the observations to be unpaired in that

there is no correspondence between the ith test on algorithm A and the ith

on algorithm B. This test can be applied for each sample grouping of paired

experiments giving the researcher an idea if the data is different that sample

grouping from another experiment; however, this analysis assumes a gaussian

distribution. Again, the inclusion of zero within the confidence interval results

if the Algorithms are not different.

5.15 Presentation Techniques

Presentation of experiment data comes in a few different “flavors”. Genera-

tional plots are necessary to show how different techniques compare in a progressional

search. These generational plots are building block test versus fitness plots. Also,

scatter plots as well as bar charts are used to characterize the distribution of fitness

values in the search landscape. Additionally, new fitness versus RMS Cartesian Co-

ordinate and Dihedral angle difference plots are used to valid the CHARMm fitness

function for only one protein. Finally, a 3D visualization of each protein is provided

to give biochemists a graphical representation of a semi-optimal solution found by

the MOfmGA. This meets Objective 7 of goals outlined in Section 1.2

5.16 Summary

This chapter discusses the justification for selected experiments used in a sta-

tistical attempt to show algorithm adaptations are advantageous to finding better

protein conformations in a shorter wall clock time. The experiments, factors, met-
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rics, SUT, CUT, parameters, statistical methods and data visualization techniques

are described. Additionally, a hypothesis is drawn of expected outcomes for these ex-

periments. Chapter VI analyzes the results found for each experiment. Presentation

techniques described in Section 5.15 are used in the analysis.
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VI. Results and Analysis

This Chapter focuses on experimental results and analysis as well as resolving the

computational model to the biological model. Each of the experiments discussed

in Chapters 4 and 5 are addressed along with statistical evaluation methods. Addi-

tionally, parameter selection and interpretation for each of the following experiments

is provided: Multiple Competitive template, Farming Model, Building Block Size,

Protein 3D File Generation, Multiobjective, Ramachandran and RMS dihedral angle

and Cartesian coordinate differences.

6.1 Multiple Competitive Templates

The multiple competitive template experiment is our first design modification

to the fmGA. As discussed in Section 4.2.1, this modification requires the fmGA to

have the ability to compute a panmetic competitive template1 in addition to having

multiple competitive templates present during computational search.

6.1.1 Results for Multiple Competitive Template Experiment with MET.

6.1.1.1 Effectiveness. Generation of the Alpha-helix competitive

template overall produced the worst results followed by the Randomly generated

competitive template. The beta-sheet competitive template generation was next

best, then the Panmetic competitive template and finally the best was the Alpha,

Beta and Random competitive templates. This is illustrated in Figure 6.1. Please

note the error bars reflecting the 85% confidence intervals from plotted values. Error

bars are generating using Student t-test table, assuming normal distribution [47].

These error bars are useful to visually identify variance of values plotted. This test

reveals that if these are normally distributed points these methods can be grouped

into two groups as being of the same performance. The alpha-helix and randomly

1A panmetic competitive template is derived from the existing multiple competitive templates.
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competitive template generation method can be grouped as over the worst performers

and the Beta-sheet, multiple and panmetic competitive template can be grouped as

overall better performers. The observation that the Random and Alpha-helix com-

petitive template generations techniques are the same is supported by the second

statistical method studied, paired observations. Results of this test can be found

in Figure 6.2. It concludes that the rest of the competitive template techniques

are different. Finally, a Kruskal-Wallis test is conducted. Results of which support

the first proclamation that each method is different and found to be in the perfor-

mance order stated at the beginning of this paragraph. One final attribute is worth

mentioning; although the randomly competitive template is statistically proven to

perform worse than all but one other method, it did produced the lowest fitness,

-34.11 kcal/mol, found in all of these experiments. The entire data value set can be

found in Appendix L.

6.1.1.2 Efficiency. Figure 6.3 illustrates the time it took each com-

petitive template approach to complete. The most time consuming approach was

the multiple competitive template method – no doubt due to the extra number of

fitness evaluations for each evaluation. All other methods require the same amount

of time to complete.

6.1.1.3 Conclusion for Multiple Competitive Template Experiment with

MET. According to Figures 6.1 and 6.3, the panmetic competitive template is

the best balance between efficiency and effectiveness for a protein such as MET.

However, if effectiveness is needed by the decision maker, then the both the multiple

competitive template and randomly generated competitive template designs should

also be used. The randomly generation method found the overall best fitness for

MET in this experiment and it is statistically proven that the multiple competitive

template method is better than all other methods.
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(Met-enkephalin -- Tyr-Gly-Gly-Phe-Met)
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Figure 6.1 Building Block Test vs. Fitness plot of results for an experiment using
multiple methods of competitive template generation on the protein
MET.

Using Paried Observaion Technique 
0.995-quantile of a t-variate with nine degrees of freedom (99% confidence interval)

Alpha Random Beta ARB ARB+P
Alpha Same Same Not Same Not Same
Random Not Same Not Same Not Same
Beta Not Same Not Same
ARB Not Same
ARB+P

Same is saying that appearance of a better experiment is indeed NOT better.
Not Same is saying that appearance of a better experiment is indeed better.

Alpha = Random and Alpha = Beta
Beta is better than Random
ARB is better than Beta
ARB is better than ARB+P

Figure 6.2 Summary of results after conducting the paired observation difference
test found in [47] on the multiple competitive template experiment with
MET.

6.1.2 Results for Multiple Competitive Template Experiment with POLY.

The results of the multiple competitive template experiment using POLY as the

workload is more interesting from an algorithm to a biological point of view. We

expect that the Alpha-helix competitive template generation techniques to outper-
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Figure 6.3 Building Block Test vs. Time to Complete plot of results for an exper-
iment using multiple methods of competitive template generation on
the protein MET.

form any technique without this. The reason for this hypothesis is that it is known

a priori that POLY folds into an Alpha-helix conformation [12].

6.1.2.1 Effectiveness. Generation of the Alpha-helix produces good

results; however, the multiple and panmetic competitive template methods also per-

formed well – even better in fact. Both the Beta-sheet and randomly generated

competitive template generation approaches performed the worst. This is illustrated

in Figure 6.4. The Student t-test is used to draw the 85% variance bars in Figure 6.4

and it can be concluded with respect to this statistical method that there is a clear

difference between the Random, Beta-sheet, and all Alpha-helix related templates

(Alpha-helix, multiple, and panmetic competitive template). Similar results are re-

ported with the paired observation statistical analysis. The Alpha-helix and multiple

competitive template methods are reportedly the same, as all others are considered

different. Accordingly, the paired observation test has concluded that the order from
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best to worst is the following: panmetic, multiple, Alpha-helix, Beta-sheet, and ran-

domly generated competitive template method. Finally, Kruskal-Wallis test also

confirmed that the Alpha-helix related , Beta-sheet, and randomly generated com-

petitive template methods are also different. It concluded conceptually that it was

84% confident that these are different (Chi-squared distribution with 2 degrees of

freedom and 3.65 quantile) and computationally it is 100% confident that these are

different (Chi-squared distribution with 2 degrees of freedom and 924 quantile). A

further Kruskal-Wallis test is conduced on the three Alpha-helix related competitive

template methods. Conceptually, it concluded that there was no difference between

the three (94% confident using df=2 and 0.12 quantile of the Chi-squared distribu-

tion). Moreover, computationally Kruskal-Wallis test concluded that these are 45%

confident that these are the same. The computational Kruskal-Wallis is more strict

when it comes to concluding things are different; therefore, we can conclude after

analyzing the data using three different methods that these three better competitive

template methods are the same statistically speaking. Although the panmetic is

found to be statistically the same as the other two Alpha-helix related competitive

template methods it achieved the best fitness of -172.1 kcal/mol.

6.1.2.2 Efficiency. Again we see a similar occurrence with the in-

creased time for the multiple competitive template approach while all others are

rather similar in time. This is due to the number of extra calculations made when

keeping three competitive templates. It is a good thing that the time usage is not

proportional to the number of competitive templates in use.

6.1.2.3 Conclusion for Multiple Competitive Template Experiment with

POLY. The panmetic competitive template is the best balance between efficiency

and effectiveness for this protein as well as MET. Not only is it a good performer

time-wise, it also found the overall best fitness for the entire experiment. Future

experimentation should be conducted on different proteins having the same Alpha-
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helix secondary structure to confirm the usefulness of this competitive template

method.

6.2 Farming model experiment

The pfmGA utilizes an island model [32] paradigm to conduct parallel com-

munications between processors (See Section 3.7 for pfmGA details). At each stage

of communications, all of the processors communicate their best found population

member to processor 0. Processor 0 then determines which is the “best” and commu-

nicates that population member back to all of the processors who then update their

competitive template. After the update, all of the processors continue to execute

the algorithm independently with independent population members until the next

update communication is necessary.

Due to the complexities associated with the energy fitness function calculation,

the addition of a farming model in combination with the island model is proposed.

Farming out the fitness calculations to another set of slave processors allows for a

decrease in the overall processing time as long as the computation time is greater

than the communications time required. As the slave processors calculate fitness

values the masters can do the same or conduct other computations. In addition to

speedup gained for the workload proteins selected in this investigation, the addition

of these slave processors allows for the MOfmGA to handle larger proteins.

With the addition of farms, the program becomes multiple program multiple

data (MPMD). There is an advantage to having the ability to execute multiple paral-

lel models. The advantage lies in the structure of the communications and memory

of the computer platform of choice. In the single data model, the GAs execute

in parallel and generate populations separately from one another, with interactions

only occurring when a migration of a good population members occurs with some

probability. This model is advantageous to use when the communication cost is

high. However, if one has access to a shared memory machine, a Global population

6-6



model may be more appropriate since communication cost may not be as much of

a concern. This shared memory setup depicts a MPMD where data does not need

to be transferred among processors and data pipelining can be utilized more readily

(requirement of control parallelism). The systems used in these experiments are not

currently shared memory systems but the communication cost is later shown to be

insignificant compared to the cost of the energy fitness function evaluations.

(Polyaniline14 -- ALA-ALA-…-ALA)
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Figure 6.4 Building Block Test vs. Fitness plot of results for an experiment using
multiple methods of competitive template generation on the protein
POLY.

Using Paried Observaion Technique 
0.995-quantile of a t-variate with nine degrees of freedom (99% confidence interval)

Alpha Random Beta ARB ARB+P
Alpha Not Same Not Same Same Not Same
Random Not Same Not Same Not Same
Beta Not Same Not Same
ARB Not Same
ARB+P

Same is saying that appearance of a better experiment is indeed NOT better.
Not Same is saying that appearance of a better experiment is indeed better.

Alpha is the same as ARB
ARB+P is better than Alpha
Alpha, Beta, ARB and ARB+P is better than Random
Alpha, ARB and ARB+P is better than Beta
ARB+P is better than ARB

Figure 6.5 Summary of results after conducting the paired observation difference
test found in [47] on the multiple competitive template experiment with
POLY.
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(Polyaniline14 -- ALA-ALA-…-ALA)
Building Block Test vs. Time (sec)
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Figure 6.6 Building Block Test vs. Time to Complete plot of results for an exper-
iment using multiple methods of competitive template generation on
the protein POLY.

The following pfmGA parameters are kept constant (set at standard values)

throughout all of the testing: string length = 560 bits, cut probability = 0.02, splice

probability = 1.00, primordial generations = 200, juxtapositional generations = 100,

total generations = 300. An input schedule is also used to specify during which

generations BBF occurs. Computer systems used in this experiment can be found

in Table M.1 in Appendix M.

6.2.1 Farming Experiment. The farming model is a dynamic load balancing

implementation to increase the efficiency of the algorithm when additional processors

are available. By definition, the fitness evaluations from the Juxtapositional Phase

are farmed out to additional processors. Fitness function complexity can be found in

Table 6.1 [32]. Upon start-up, the pfmGA initializes a pool of processors to be used

for parallel evaluation of the fitness function of each population member. By design,

the total number of processors used must be an evenly divided by the number of
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Figure 6.7 Time vs. BB Test for 1 Algorithm Node. Validation of fitness values
before and after using the Farming model can be found in Appendix M

Table 6.1 Time Complexity of Energy Minimization Methods [32]
Energy Calculation Time Time Estimate

Method Complexity for n = 1000
ab initio O(n5) 11.5 days

semi-empirical O(n4)−O(n3) 17 min - 1 sec
force-field O(n2) 1 msec

Algorithm nodes. Figure 4.1 illustrates an example of a single Algorithm node and

three farming nodes on the left and two Algorithm nodes with three farming nodes

per Algorithm node on the right. This figure also illustrates that the Algorithm

nodes have the ability to communicate with each other if necessary, but farming

nodes are not shared across Algorithm nodes.

A goal of this testing is to determine the speedup associated with increasing

the number of farming processors per Algorithm node in the pfmGA. Figure 6.7

illustrates a plot of one Algorithm node with a number of different farming nodes.

Each Building Block (BB) test point represents the average value for a specific BB

size (in increasing order) executed by the pfmGA. As the BB size increases, the
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average execution time also increases as one would expect because the population

size grows as the BB size grows. Additionally, one can see from Figure 6.7 that as the

number of farming processors increases, the average execution time decreases for any

given BB test. In this test there exists a significant improvement in modifying the

number of farming nodes from 0 to 2 and from 2 to 4. An increase in the farming

nodes from 4 to 8 provides some improvement but this improvement is relatively

small. The reason for this is that as the number of farming nodes is increased

for a specific population size, the amount of computational work that each node

completes decreases. Eventually the communications time would become greater

than the computation time per node and would yield additional farming nodes a

detriment to the experiment. Still, the best speedup obtained was with 8 farming

nodes where the serial time was 5080 seconds while the parallel time was 1684 seconds

yielding a speedup of 3 times. This validate our model and we can draw a conclusion

that this model increases the efficiency of the fmGA.
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Figure 6.8 Time vs. BB Test for 2 Algorithm Nodes. Validation of fitness values
before and after using the Farming model can be found in Appendix M
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To validate the results found from the first test, the number of nodes in in-

creased beyond the number tested in Figure 6.7. Figure 6.8 presents the results for

two Algorithm nodes tested with a number of different farming nodes. In this test-

ing, the overall population size across all of the Algorithm nodes is equivalent to the

population size used in the test of a single Algorithm node. One can see here some

of the same conclusions previously drawn: as the BB size is increased, the execution

time is also increased. Additionally a significant improvement is noted in modifying

the number of farming processors per algorithm node from 0 to 2. A minor improve-

ment is seen in going from 1 to 2 and 2 to 4 farming processors but going from 4 to

8 processors is detrimental. In increasing the number of farming processors to 8 per

Algorithm node, results in each farming node being under utilized and hence achiev-

ing a worse speedup than other configurations. The serial time was 4140 seconds

and the parallel time with 4 compute nodes per farm took 887 seconds yielding a

speedup of 4.7. These results illustrate the usefulness of the farming processors for

the protein POLY.

6.3 Building Block Size analysis

The building block (BB) analysis is performed in an attempt to identify the

building block sizes that result in finding better solutions for POLY. A BB is a

partial string representing bits from one, some, or all of the dihedral angles that

each chromosome represents [75]. The BBs are not restricted to be contiguous bits

from the chromosomes but instead can be non-contiguous bits from the chromosome.

Therefore if one purely looks at just one BB it may represent a whole dihedral angle

or just various bits of multiple angles.

This analysis covers a variety of BB sizes and compares the results to determine

which size produces the best statistical results. One expects a BB size of 35 bits to

yield the best due to the alpha helix [12] structure of POLY. Alpha helix proteins are
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known a priori to have 3.5 residues per turn [8]. The BB ranges chosen for testing

included: 16-18, 18-20, 20-22, . . ., and 38-40.

The results of the BB size experiment are presented in Figure 6.9. BB sizes of

30-32 yielded the best results for POLY. Although, this BB size is specific for POLY,

it should apply to other proteins having an alpha helix structure. Additionally, BB

size 30-32 yielded the best overall fitness value found during all of the BB testing of

-140 kcal, which is in the neighborhood of the accepted CHARMm fitness for this

protein.
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Figure 6.9 Time vs. Building Block Test plot of building block sizes and associated
best fitness found from each experiment. Specific computers used in
this experiment can be found in Appendix M in Table M.1

Figure 6.9 depicts the average of the results for experiments run 10 times

each each. Furthermore, it is shown in Section 6.1 that even experiments running

closely together still are found to be different using the Krusal-Wallis and paired

observations test; therefore, we can draw from these earlier statistical analogies to

infer that the BB size 30-32 is statistically better than the rest. It still should be

said that no direct statistical methods are used to validate this conclusion.
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6.4 Protein 3D File Generation

The product from experiments run using the PDB file format generation pro-

vides the researcher realized conformations of proteins. Figure 6.10 illustrates a good

conformation for MET found in during the MOfmGA experiment. The fitness value

for MET at this particular conformations is -33 kcal/mol. A visualization of POLY is

also shown in this investigation in Figure 6.11. This conformation of POLY was also

found during an experiment using the MOfmGA. POLY’s fitness is -170 kcal/mol

for this conformation.

y

z

x

Figure 6.10 Conformation from a PDB file [17]. This protein had a fitness value
of -33 kcal/mol.

 
 
 

Figure 6.11 Conformation from a PDB file [17]. This protein had a fitness value
of -169 kcal/mol.

Included is a graphical representation of the accepted conformation of Polyalanine16

(Illustrated in Figure 6.12 – a close relative of Polyalanine14). Both of these are
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Figure 6.12 Conformation from a PDB file representing the accepted conformation
for Polyalanine16. Notice that the conformation is nearly the same
found in our MOfmGA search (represented in Figure 6.11).

known to form Alpha-helix structures. Notice that the conformations of these two

structures are very similar. This visual test can also validate our findings in this

manner.

6.5 Multiobjective Experiment

The multiobjective experiment is our feature experiment in this investigation.

As discussed in Section 4.2.5 the fitness function is decomposed into two meaningful

subsets: Physics (Objective 1) and Chemistry (Objective 2). The Physics subset

represents the non-bonded energy functions of the CHARMm fitness model. This

objective targets the coulomb interactions and steric anatomy of the protein are kept

correct. Additionally, it can be understood that objective 1 focuses on keeping good

topology of the protein. Whereas, the Chemistry subset represents the bonded en-

ergy functions of the CHARMm fitness model due to the fixed model characteristics.

This objective helps in keep the Classical description of Chemistry for a protein cor-

rect. Moreover, dihedral angle, bond lengths, and bond angle energies are optimized

with this objective. For a complete breakdown of the objective functions into energy

functions see Section 4.2.5.

The previous competitive template approaches are combined with the MO

experiment for it is customary to build on good implementations of algorithms. This

reflects the extension of the algorithm during this investigation. The MOfmGA is
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Figure 6.13 [Met]-enkephlan Pareto Front.
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Figure 6.14 Polyalanine14 Pareto Front

executed 10 times for each of the experiments in order to provide statistical results.

All of the results presented are averaged over 10 runs and the Pareto Front plots

are the combined results over the ten runs. Over every run, the following MOfmGA
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parameters were kept constant; cut probability = 0.02, splice probability = 1.00,

primordial generations = 200, juxtapositional generations = 100, total generations =

300. An input schedule was used to specify sizes of the building blocks the algorithm

uses and during which generations BBF occurs. Tests were conducted using both

MET, with 240 bit length strings and BB sizes 6-10, and POLY, with 560 bit length

strings and BB sizes 16-20.

Figure 6.13 presents the Pareto Front found from the MET testing. In this

figure the Random competitive template obtained the best distribution of points

along the front, all of the points are Pareto Front members if combined with the

other methods, as well as the largest cardinality out of the three competitive template

methods tested. This is expected as MET does not contain a secondary structure and

hence neither the Alpha nor Beta methods provide better results than the random

generation of the competitive template.

Figure 6.14 presents the Pareto Front found from the POLY testing. In this

figure the Alpha competitive template method performed the best in terms of the

overall distribution of points along the front as well as the cardinality of the Pareto

Front set. This is expected since POLY has a Alpha-helix structure; thus, the

Alpha competitive template should provide the best results. However, it is found

that the multiple competitive template method, which has an Alpha-helix template,

performed the best (See Table 6.2).

The CT testing produced “good” results and results that are anticipated con-

sidering the structure of the proteins analyzed. The multiobjective implementation

of the fmGA compares favorably to the original fmGA results regarding minimum

energies. Since the MOfmGA implementation involves decomposing the summation

of terms used in the original fmGA, one can sum up the two finesses and obtain what

the single objective value would be and then make a limited comparison to the orig-

inal fmGA results. Table 6.2 presents the results of the best found fitness for each

of the proteins from the original fmGA testing and the MOfmGA testing. For MET
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the MOfmGA finds the best overall fitness value when compared with the original

fmGA. In the POLY analysis, the MOfmGA compares favorably to the original.

Table 6.2 Best Fitness Found

Alpha Beta Random A,R&B
Met -31.716 -33.191 -34.114 -31.834

MO Met -33.857 -37.287 -38.047 N/A
Poly -163.393 -157.203 -159.105 -171.760

MO Poly -162.246 -156.624 -149.052 -171.314

By Table 6.2 results, it might seem that the MOfmGA did not perform as well

as the single objective for the POLY; however, the results obtained by the MOfmGA

are more meaningful that that of the single objective. Produced along one side of the

Pareto Front is the spread of a topology search and structural chemistry kept along

the other. Thus, one knows that the chemistry is more flexible, we might loosen

these constraints and decide that the weighted proportion of this objective should

be less than the first objective. Furthermore, selection of the correct conformation

may be influenced by the decision making making intelligent choices between these

two objectives. This met Objective 7 of goals outlined in Section 1.2

6.6 Ramachandran Experiment

The Ramachandran experiment is conduced to take advantage of problem do-

main information in restricting the search space (not size) for the algorithm. Search

space constraining is normally advantageous to a search algorithm; however, this im-

plementation provides better resolution for the feasible area of solutions instead of

confining the searchable area. In other words, the search space for all three variables

is exactly the same (See Section 4.2.6). In the preliminary results the MOfmGA

was executed three times for each of the methods to provide statistical results. All

results presented here are averaged over three runs and the plots represent and aver-

age of these three runs. The following MOfmGA parameters are kept constant; cut

probability = 0.02, splice probability = 1.00, primordial generations = 200, juxtapo-
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sitional generations = 200, total generations = 400. An input schedule was used to

specify sizes of the building blocks the algorithm uses and during which generations

BBF occurs. Tests were conducted using only POLY, with 560 bit length strings

and BB sizes 20-24. Furthermore, the n a variable (population sizing variable is

defined in Equation 3.8) is set at 100 and, for efficiency of getting results, only a

single objective and a single randomly generated competitive template is employed.

(Polyaniline 14 -- ALA-ALA-…-ALA)
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Figure 6.15 Building Block Test vs. Fitness plot of results for an experiment
using no, pesimistic and optimistic Ramachandran plots on the protein
POLY. See Appendix C for the restrictions applied to the landscape
for each different method.

Using Paried Observaion Technique 
0.995-quantile of a t-variate with nine degrees of freedom (99% confidence interval)

No Ram. Optimistic Pessimistic
No Ram. Not Same Not Same

Optimistic Not Same
Pessimistic

Same is saying that appearance of a better experiment is indeed NOT better.
Not Same is saying that appearance of a better experiment is indeed better.

Paired Observation concludes that none of these methods are the same.

Figure 6.16 Summary of results after conducting the paired observation difference
test found in [47] on the experiment using no, pessimistic and opti-
mistic Ramachandran plots on the protein POLY.
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k 2
A 11.40068242 -144.9817757 2764 138903.5636
B 11.40068242 -145.8923473 3341 202950.5636

SSbg® 22.80136483 3026.627273

Mean of Sampling Distribution = 1017.5

H = 0.022409204 H = 2.974572258

df = 1 Chi-square dist http://www.stat.vt.edu/~sundar/java/code/pchisq_js.html

Chi(0.1461, 4) = 91% With 91.1% confidence These are DIFFERENT
0.089 Therefore, we can say with 9% confidence that these are the SAME

Figure 6.17 Summary of results after conducting the Kruskal-Wallis test on the
results from the pessimistic and optimistic implementation of the Ra-
machandran Plots. Note: the test concludes 91% confidence that these
are different; furthermore, the pessimistic constraints more effective.
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Figure 6.18 Building Block Test vs. Time to Complete plot of results for an ex-
periment using no, pesimistic and optimistic Ramachandran plots on
the protein POLY.

Dihedral(◦) Dihedral (RAD) Cartesian Coordinate (Å = 10−10m)
All atoms 1177.8 20.56 102.0
Backbone atoms 153.0 2.67 184.0

Table 6.3 RMS difference calculations for POLY.
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Fitness landscape
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Figure 6.19 Generation of a Randomly created structure vs. Fitness
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Figure 6.20 ln(Fitness) vs. Frequency Found (Randomly generated conforma-
tions)

6.6.0.1 Effectiveness. Figure 6.15 illustrates the results of the Ra-

machandran experiment. It is clear from the graph that both the Optimistic and Pes-
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RMS vs. RMS
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Figure 6.21 RMS Cartesian Coordinate difference for all atoms vs. RMS Cartesian
Coordinate difference for only backbone atoms. This is for validations
of the RMS calculation and to ensure that we have a linearity be-
tween these two differences. Both RMS differences are mearsured in
Angstroms (Å). Where 1 Å = 10−10)

Atoms Dihedral(◦) Dihedral(RAD) Deerman [20] Grid Monte Carlo(◦)
All 737.9 12.9 17.124 (unk units) n/a
Backbone 480.7 8.4 n/a 37.4
Chi 411.3 7.2 n/a 11.3

Table 6.4 RMS difference calculations for MET.

simistic Ramachandran constraints achieve better results than the none Ramachan-

dran implementation. Statistically, the paired observation test in Figure 6.16 and

the Kruskal-Wallis test in Figure 6.17 both confirm that each of these methods are

different than one another; however, the student t-test has the Optimistic and Pes-

simistic implementations as being the same. Just the same, the Kruskal-Wallis test

is our standard test to use on data about which we know nothing of the distribution.

Furthermore, the pessimistic Ramachandran values are more effective than both the

optimistic and non-use of the Ramachandran plots.
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Fitness vs. RMS Cartesian Coordinate Difference
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Figure 6.22 Fitness vs. RMS Cartesian Coordinate difference (kcal/mol vs.
Angstroms (Å). (Fitness evaluation on randomly generated confor-
mations)

Fitness vs. RMS Dihedral Angle Difference
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Figure 6.23 Fitness vs. RMS Dihedral Angle difference. (kcal/mol vs. Radians)
(Fitness evaluation on randomly generated conformations)

6.6.0.2 Efficiency. The effectiveness of using the Ramachandran

plots do not come at cost in efficiency. The mapping cost three times that of the

none Ramachandran implementation. This is presented in Figure 6.18. Notice that
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the mapping for both the Optimistic and Pessimistic implementation takes exactly

the same cost in time; therefore, if one were to use these constraints, the research

must choose the Pessimistic values because it is statistically more effective but costs

the same in time.

6.7 RMS difference

Found angle TRUE Angle type Residue
105.5 156 phi tyr
-169.8 -86 psi tyr
42.9 180 omega tyr
-55.5 84 phi gly1
135 -155 psi gly1
-38.7 -177 omega gly1
103 -74 phi gly2

-109.3 84 psi gly2
-38 169 omega gly2
81.6 19 phi phe

-163.5 -137 psi phe
50.3 -170 omega phe
8.8 160 phi met

-124.8 -173 x1 tyr
-88.6 -101 x2 tyr
134 73.7 x1 phe
-54.9 108.7 x2 phe
80.2 53 x1 met
-29.5 175 x2 met
-126.2 180 x3 met
-16.5 -164 psi met
9.5 -174 omega met

Table 6.5 Angles found for MET at ∼ −38 kcal/mol.

The RMS difference calculation defined in Section 4.2.7 is a measure to see how

close a found conformation is to an accepted true conformation. All such calculations

are accomplished on the POLY protein because it is known that MET folds in to

many different acceptable conformations. Because it is thought that the landscape

should correspond to RMS differences a Fitness versus RMS plot is generated. The
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Found TRUE Angle type Residue Found TRUE Angle type Residue
116.4 0 phi Ala1 313.9 319.9 psi Ala10
313.3 180 psi Ala1 186.3 180 omega Ala10
175.7 180 omega Ala1 286.2 295.1 phi Ala11
284.8 295 phi Ala2 321 319.9 psi Ala11
322.8 320 psi Ala2 183.2 180 omega Ala11
173.3 180 omega Ala2 294.2 295 phi Ala12
294.2 295 phi Ala3 322 319.9 psi Ala12
317.1 320 psi Ala3 193.3 180 omega Ala12
195.1 180 omega Ala3 279.5 295 phi Ala13
295.3 295 phi Ala4 336.5 320 psi Ala13
309.8 320 psi Ala4 181.4 180 omega Ala13
189.4 180 omega Ala4 278.8 295 phi Ala14
281.3 295 phi Ala5 56.9 300.6 chi Ala1
309.7 320 psi Ala5 55.6 300.6 chi Ala2
200.4 180 omega Ala5 174.7 300.6 chi Ala3
282 295 phi Ala6 61.5 300.6 chi Ala4

319.2 320 psi Ala6 170.1 300.6 chi Ala5
186.7 180 omega Ala6 317.5 300.6 chi Ala6
289 295 phi Ala7 81.1 300.6 chi Ala7
320 319.9 psi Ala7 302.7 300.6 chi Ala8

186.7 180 omega Ala7 170.5 300.6 chi Ala9
290.1 295.1 phi Ala8 60.2 300.7 chi Ala10
322.3 319.9 psi Ala8 186.7 300.6 chi Ala11
183.9 180 omega Ala8 314.3 300.6 chi Ala12
293.6 295 phi Ala9 295.3 300.6 chi Ala13
309.7 320 psi Ala9 296 300.6 chi Ala14
209.2 180 omega Ala9 175.9 181.1 psi Ala14
251.4 295 phi Ala10 314 140.6 omega Ala14

Table 6.6 Angles found for POLY at ∼ −170 kcal/mol.

Cartesian Coordinate difference is illustrated in Figure 6.22. This plot was expected

to yield a linear association between RMS difference and fitness values calculated

for particular conformations. Furthermore, it was to be used to validate our fitness

model. Unfortunately, this is not the case. There is no linear correlation between

calculated fitness values and Cartesian Coordinate RMS difference. The reason for

this is due to the dihedral angle mapping back to the Cartesian coordinate system.

There may be good conformations (low fitness values) found with bad Cartesian
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Coordinate RMS differences. This is because the first dihedral angle might be off

target, lending all following atoms attached to that dihedral angle to also be off

target. Therefore, it is not true that the Cartesian Coordinate RMS Difference

can weight the merit of a protein structure. That said, there might be inference to

identify that the Dihedral RMS Difference is correlated with Fitness values found for

particular conformation. However, this too turned out to be a fallacy. Figure 6.23

illustrates again that the fitness is not linearly associated to the RMS Dihedral angle

difference. The reason for this result is for the roughness of the landscape of the

PSP problem. This is illustrated in Figure 6.19. Additionally, previous researchers

found this same phenomenon [74][20]. However, to quantify the distribution another

plot (Figure 6.20) is provided to see the frequency of the natural log of the fitness

for POLY. This met Objective 5 of goals outlined in Section 1.2

The RMS difference of the best found POLY structure from the accepted true

structure of POLY can be found in Table 6.3. The RMS differences for MET as well

as RMS difference results from previous research can be found in Table 6.3. Table

6.5 illustrates the angles of the best MET structure found in this investigation.

6.8 Comparing to other Research

This investigation compares favorably with previous research. Overall best

results POLY -171.76 kcal/mol is the best found since Kaiser using the Regal software

when an overall best of -351.76 kcal/mol was found [50]. The most recent study

by Michaud [74] found values of -152.56 kcal/mol – using the same type of GA.

Moveover, the MO approach found the best ever results with MET – finding a

structure at -38.047 kcal/mol. This beats the previously found best result of -36.362

by Gates [32] whom also used the same type of GA. The multiobjective approach

has shown that it can yield more meaningful results and always acquires the same if

not better overall results than previous methods.
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6.9 Summary

This Chapter discussed the results of experiments investigated in this Thesis

effort. Statistical analysis has been completed to validate that these are in fact better

results than previously obtained with the same algorithm. The Multiple Competi-

tive template, Farming Model, Building Block Size, Ramachandran, Protein 3D File

Generation and Mutliobjective experiments have all show favorable solutions. How-

ever, the RMS vs. Fitness plots did not validate our fitness model as we expected.

Further studies of both are suggested. The next Chapter discusses the conclusions

of this investigation and recommendations for future research.
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VII. Conclusions and Recommendations

This research investigation has been a balance of study in three fields: biochemistry,

Evolutionary Algorithms, and High Performance Computing. The computer being

the medium from which the tool, our MOfmGA, is applied to the biochemistry

problem. It is necessary to understand facets of each field in order to make positive

contributions to this Grand Challenge Problem.

This thesis investigation draws from each of the above fields in showing pro-

gression of the new innovative algorithm, MOfmGA, to solve the PSP problem. The

development of the MOfmGA began with the implementation of a multiple and pan-

metic competitive template mechanism to make it more effective [18] (See Sections

4.2.1 and 6.1). The algorithm was modified to scale its efficiency to 4.7 times a se-

rial run time (See Sections 4.2.2 and 6.2). Algorithm development required a major

re-write to prepare for the implementation of the multiobjective approach. Software

Engineering practices were followed to ease future modifications, like Ramachandran

Plot constraints and RMS integration (See Sections 4.2.6,6.6,4.2.7, and 6.7). The new

algorithm has the capabilities to be single and multiple objective (See Sections 4.2.5

and 6.5) and run with single and multiple competitive templates all configurable.

Also the algorithm now provides for optimistic and pessimistic Ramachandran (per

residue) constraints and calculation of RMS dihedral and Cartesian coordinate dif-

ferences from accepted true PDB and Z matrix files of the selected protein.

Computational results support our hypothesis that the MO version of the

fmGA produces better results than the previous. This is presented in Section 6.5.

Also the Random competitive template scheme performs well in cases where the

protein does not contain a secondary structure and a competitive template method

that includes the structure of the protein tested performs the best.
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7.1 Recommendations

Future work with the MO part of the algorithm should look at other protein

structures such as those presented in Table 5.6. Also addressed should be the incor-

poration of a sharing mechanism to provide a better distribution of points along the

Pareto Front [75]. Furthermore, incorporation of a computational steering device

should be considered as well as the complete analysis of current fitness function –

its limitations and possible expansions or replacement with newer versions of the

CHARMm energy model. A re-evaluation of the parallel nature of the MOfmGA

and how it can be implemented with MPI2 (threads) needs to be accomplished to

keep up with future network and computer advances in architecture and technology

[23].

Future research also needs to take a step forward to compete in the Critical

Assessment of techniques for protein Structure Prediction (CASP) experiments. In

being able to compete at the Protein Structure Prediction Centers, the MOfmGA

needs to be modified to easily import new proteins and seamlessly execute a search

for the conformation. This modification requires a front-end interface to accomplish

file conversion and configuration file building before algorithm execution.

7.1.1 Summary. The main goal of this research has been reached. The

birth of a new multiobjective algorithm having extensive capabilities and flexibility

to solving the PSP problem is found. Additionally, all secondary goals of this in-

vestigation are also achieved. New innovative mechanisms are added to both the

fmGA and MOfmGA; and it is, statistically, shown to to be better than previous

research. New Ramachandran, per-residue, constraints were integrated into the al-

gorithm having also the expected positive impact. A multiple competitive template

model is implemented and found to be advantageous. A study of efficiency is val-

idated as to increased algorithm efficiency of the pfmGA and a building block size

analysis favored finding secondary structure is complete. Lastly, a RMS difference
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of both dihedral angles and cartesian coordinates is also coded into the MOfmGA

to give the researcher feedback on the real time RMS distance values from accepted

true conformation of found solutions.

The scheduled approach for this research is complete. An improved under-

stand of the PSP problem using new technology and supporting research is satisfied

from background and lateral research in the biochemistry and EA arena. Develop-

ment of a working knowledge of parallel programming concepts for application to the

PSP problem domain and algorithm domain are achieved. This is demonstrated by

the implementation of the farming model using group-wise communication between

nodes. Extensive studies of EA strategies are covered in this thesis investigation. A

demonstration of having the ability to re-write an entire fmGA displays an archived

working knowledge of the subject material. Biochemistry understanding is also ac-

complished through the integration of Ramachandran (per residue) plots and RMS

difference calculations. Visualization techniques emphasizing the sparseness of good

fitness values is present as well as 3D conformations generation found from semi-

optimal solutions. Finally, three different statistical methods were applied to the

found data to determine the merit of applied innovative mechanisms.

All this said, the projected goals and objectives were met. A new method for

discovering good solutions has been found; however, fine tuning of this algorithm

is still required. By no means has the PSP been solved, yet this work represents

favorable contribution to research in this field of study.
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Appendix A. Chemical Formulas for Amino Acids

 

 

 

Amino Acids 
Name        Abbr.       Linear structure formula 
====================================================== 
 
Alanine        ala a        CH3-CH(NH2)-COOH 
 
Arginine       arg r  HN=C(NH2)-NH-(CH2)3-CH(NH2)-COOH 
 
Asparagine     asn n        H2N-CO-CH2-CH(NH2)-COOH 
 
Aspartic acid  asp d   HOOC-CH2-CH(NH2)-COOH 
 
Cysteine       cys c     HS-CH2-CH(NH2)-COOH 
 
Glutamine      gln q     H2N-CO-(CH2)2-CH(NH2)-COOH 
 
Glutamic acid  glu e       HOOC-(CH2)2-CH(NH2)-COOH 
 
Glycine        gly g     NH2-CH2-COOH 
 
Histidine      his h    NH-CH=N-CH=C-CH2-CH(NH2)-COOH 
      |__________| 
 
Isoleucine     ile i   CH3-CH2-CH(CH3)-CH(NH2)-COOH 
 
Leucine        leu l     (CH3)2-CH-CH2-CH(NH2)-COOH 
 
Lysine        lys k        H2N-(CH2)4-CH(NH2)-COOH 
 
Methionine     met m      CH3-S-(CH2)2-CH(NH2)-COOH 
 
Phenylalanine  phe f     Ph-CH2-CH(NH2)-COOH 
 
Proline        pro p       NH-(CH2)3-CH-COOH 
         |_________| 
 
Serine        ser s     HO-CH2-CH(NH2)-COOH 
 
Threonine      thr t        CH3-CH(OH)-CH(NH2)-COOH 
 
Tryptophan     trp w    Ph-NH-CH=C-CH2-CH(NH2)-COOH 
       |_______| 
 
Tyrosine       tyr y       HO-p-Ph-CH2-CH(NH2)-COOH 
 
Valine        val v         (CH3)2-CH-CH(NH2)-COOH 

Figure A.1 List of linear structure formula for Amino Acids. [30]
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Appendix B. 2D Conformation/Chemical Formulation for Amino

Acids

 

 

 

 

Figure B.1 Conformation/Chemical formulation for Amino Acids.
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Appendix C. Ramachandran Worksheets

C.1 Alanine

 

-30° -40° 

-85° 

-75° 

ALA Range Values (optimistic) 
PHI   [-180, –40] 
PSI [-75, 180] 
OMEGA [-180, -170] & [170, 180] 

ALA Range Values (pessimistic) 
PHI   [-180, –30] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Alanine, ALA, Ramachandran Worksheet 

Figure C.1 Alanine Ramachandran Worksheet.

C-1



C.2 Arginine

 

-75º 

-85º 

-45º 
-35º 

25º 

35º 80º 

90º 

Arginine, ARG, Ramachandran Worksheet 

ARG Range Values (optimistic) 
PHI   [-180, –45] [35, 80] 
PSI [-75, 180] [ 
OMEGA [-180, -170] & [170, 180] 

ARG Range Values (pessimistic) 
PHI   [-180, –35] [25, 90] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.2 Arginine Ramachandran Worksheet.
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C.3 Asparagine

 

-75º 

-85º 

-45º 
-35º 

20º 

30º 85º 

95º 

Asparagine, ASN, Ramachandran Worksheet 

ASN Range Values (optimistic) 
PHI   [-180, –45] [30, 85] 
PSI [-75, 180] [ 
OMEGA [-180, -170] & [170, 180] 

ASN Range Values (pessimistic) 
PHI   [-180, –35] [20, 95] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.3 Asparagine Ramachandran Worksheet.
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C.4 Aspartic acid

 

-75º 

-85º 

-45º 
-35º 

20º 

30º 80º 

90º 

Aspartic acid, ASP, Ramachandran Worksheet 

ASP Range Values (optimistic) 
PHI   [-180, –45] [30, 80] 
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

ASP Range Values (pessimistic) 
PHI   [-180, –35] [20, 90] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.4 Aspartic acid Ramachandran Worksheet.
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C.5 Cysteine

 

-75º 

-85º 

-45º 
-35º 

25º 

35º 85º 

95º 

Cysteine, CYS, Ramachandran Worksheet 

CYS Range Values (optimistic) 
PHI   [-180, –45] [35, 85] 
PSI [-75, 180] [ 
OMEGA [-180, -170] & [170, 180] 

CYS Range Values (pessimistic) 
PHI   [-180, –35] [25, 95] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.5 Cysteine Ramachandran Worksheet.
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C.6 Glutamine

 

-85º 

-95º 

-35º 
-25º 

20º 

30º 80º 

90º 

Glutamine, GLN, Ramachandran Worksheet 

ASN Range Values (optimistic) 
PHI   [-180, –35] [30, 80] 
PSI [-85, 180] [ 
OMEGA [-180, -170] & [170, 180] 

ASN Range Values (pessimistic) 
PHI   [-180, –25] [20, 90] 
PSI [-95, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.6 Glutamine Ramachandran Worksheet.
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C.7 Glutamic

 

-75º 

-85º 

-45º 
-35º 

20º 

30º 70º 

80º 

Glutamic Acid, GLU, Ramachandran Worksheet 

GLU Range Values (optimistic) 
PHI   [-180, –45] [30, 70] 
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

GLU Range Values (pessimistic) 
PHI   [-180, –35] [20, 80] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.7 Glutamic Ramachandran Worksheet.
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C.8 Glycine

 

95º 

105º 

20º 

30º 
-110º 

-100º 

-75º 

-65º 

Glycine, GLY, Ramachandran Worksheet 

GLY Range Values (optimistic) 
PHI   [-180, –50] [30, 180] 
PSI [-180, -110] [-65, 55] [105, 180] 
OMEGA [-180, -170] & [170, 180] 

GLY Range Values (pessimistic) 
PHI   [-180, –40] [20, 180] 
PSI [-180, -100] [-75, -65] [95, 180] 
OMEGA [-180, -160] & [160, 180] 

65º 

55º 

-40º 

-50º 

Figure C.8 Glycine Ramachandran Worksheet.
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C.9 Histidine

 

-75º 

-85º 

-40º 
-30º 

20º 

30º 85º 

95º 

Histidine, HIS, Ramachandran Worksheet 

HIS Range Values (optimistic) 
PHI   [-180, –40] [30, 95] 
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

HIS Range Values (pessimistic) 
PHI   [-180, –30] [20, 95] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.9 Histidine Ramachandran Worksheet.
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C.10 Isoleucine

 

-75º 

-85º 

-50º 
-40º 

35º 

55º 

25º 

45º 

Isoleucine, ILE, Ramachandran Worksheet 

ILE Range Values (optimistic) 
PHI   [-180, –50]  
PSI [-75, 25] [55, 180] 
OMEGA [-180, -170] & [170, 180] 

ILE Range Values (pessimistic) 
PHI   [-180, –40]  
PSI [-85, 35] [45, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.10 Isoleucine Ramachandran Worksheet.
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C.11 Leucine

 

-75º 

-85º 

-45º 
-35º 

Leucine, LEU, Ramachandran Worksheet 

LEU Range Values (optimistic) 
PHI   [-180, –45]  
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

LEU Range Values (pessimistic) 
PHI   [-180, –35]  
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.11 Leucine Ramachandran Worksheet.
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C.12 Lysine

 

-75º 

-85º 

-45º 
-35º 

20º 

30º 80º 

90º 

Lysine, LYS, Ramachandran Worksheet 

LYS Range Values (optimistic) 
PHI   [-180, –45] [30, 80] 
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

LYS Range Values (pessimistic) 
PHI   [-180, –35] [20, 90] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.12 Lysine Ramachandran Worksheet.
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C.13 Methionine

 

-75º 

-85º 

-45º 
-35º 

25º 

35º 80º 

90º 

Methionine, MET, Ramachandran Worksheet 

MET Range Values (optimistic) 
PHI   [-180, –45] [35, 80] 
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

MET Range Values (pessimistic) 
PHI   [-180, –35] [25, 90] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.13 Methionine Ramachandran Worksheet.
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C.14 Phenylalanine

 

-75º 

-85º 

-45º 
-35º 

Phenylalanine, PHE, Ramachandran Worksheet 

PHE Range Values (optimistic) 
PHI   [-180, –45]  
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

PHE Range Values (pessimistic) 
PHI   [-180, –35]  
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.14 Phenylalanine Ramachandran Worksheet.
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C.15 Proline

 

-70º 

-80º 

-45º 
-35º 

-140º 

-130º 

Proline, PRO, Ramachandran Worksheet 

PRO Range Values (optimistic) 
PHI   [-130, –45]  
PSI [-70, 180]  
OMEGA [-180, -170] & [170, 180] 

PRO Range Values (pessimistic) 
PHI   [-140, –35]  
PSI [-80, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.15 Proline Ramachandran Worksheet.
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C.16 Serine

 

-75º 

-85º 

-45º 
-35º 

20º 

30º 75º 

85º 

Serine, SER, Ramachandran Worksheet 

SER Range Values (optimistic) 
PHI   [-180, –45] [30, 75] 
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

SER Range Values (pessimistic) 
PHI   [-180, –35] [20, 85] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.16 Serine Ramachandran Worksheet.
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C.17 Threonine

 

-75º 

-85º 

-45º 
-35º 

Threonine, THR, Ramachandran Worksheet 

THR Range Values (optimistic) 
PHI   [-180, –45]  
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

THR Range Values (pessimistic) 
PHI   [-180, –35]  
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.17 Threonine Ramachandran Worksheet.
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C.18 Tryptophan

 

-75º 

-85º 

-45º 
-35º 

Tryptophan, TRP, Ramachandran Worksheet 

TRP Range Values (optimistic) 
PHI   [-180, –45]  
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

TRP Range Values (pessimistic) 
PHI   [-180, –35]  
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.18 Tryptophan Ramachandran Worksheet.
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C.19 Tyrosine

 

-75º 

-85º 

-45º 
-35º 

25º 

35º 85º 

95º 

Tyrosine, TYR, Ramachandran Worksheet 

TYR Range Values (optimistic) 
PHI   [-180, –45] [35, 85] 
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

TYR Range Values (pessimistic) 
PHI   [-180, –35] [25, 95] 
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

Figure C.19 Tyrosine Ramachandran Worksheet.
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C.20 Valine

 

-75º 

-85º 

-45º 
-35º 

Valine, VAL, Ramachandran Worksheet 

VAL Range Values (optimistic) 
PHI   [-170, –45]  
PSI [-75, 180]  
OMEGA [-180, -170] & [170, 180] 

VAL Range Values (pessimistic) 
PHI   [-180, –35]  
PSI [-85, 180] 
OMEGA [-180, -160] & [160, 180] 

-170º 

Figure C.20 Valine Ramachandran Worksheet.
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Appendix D. Computational Platforms

Pile of PCs Is a heterogeneous Beowulf, running Linux 6.2 and Linux 7.1, with

a 1Gbps backbone that connects two 100Mbps Ethernet sub-nets. Table D.1

describes node configurations.

D.0.0.1 PPCs’ three configurations. Although the PPCs are connected as

one heterogenous network with heterogenous systems, it can be decomposed

into the following three different network configurations for throughput poten-

tial:

1. Entire network

2. Two matrixed Intel 510T Switches

3. Gigabit Switch

Analyzing this network would take some effort because the two patched Intel

switches (one 24 port and one 12 port) are up linked to the Gigabit Switch (7

port) making the network two smaller networks connected via a 1Gpbs chan-

nel. If we were to analyze these together, it would have a bisection width [63]

of 1. However, for a separate analysis of these smaller networks our bisection

width would be equal to the number of ports on our switches (Illustrated in

Pile of PCs specifications
32 Nodes
Systems nodes included in cluster (Number/type processor)

8 / 1.7GHz Intel Pentium IV (P-IV) Linux 7.1 (2.4 Kernel)
2 / 1.2GHz Pentium III (P-III) Linux 7.1 (2.4 Kernel)
5 / 1.0GHz Pentium III (P-III) Linux 6.2 (2.2-14.5 Kernel)
2 / 933MHz Pentium III (P-III) Linux 6.2 (2.2-14.5 Kernel)
8 / 600MHz Pentium III (P-III) Linux 6.2 (2.2-14.5 Kernel)
4 / 450MHz Pentium III (P-III) Linux 6.2 (2.2-14.5 Kernel)
3 / 400MHz Pentium III (P-III) Linux 6.1 (2.0 Kernel)

Table D.1 PPC cluster Specifications
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Intel 510T 
(12) 

Intel 510T 
(24) 

Intel Express Gigabit Switch 

Patch Cable (Matrix) 

PCs 

12 

PCs 

24 

PCs 

6 

Uplink 
100Mbps 
1 Gbps 

Figure D.1 An illustration of the Pile of PCs network configuration. This configu-
ration is best described as two separate crossbar switches; furthermore,
it was uses as such during experimental runs in this Thesis.

Figure D.1). Making the assumption that the ports are fully utilized (This

is not the case with the Pile of PCs, but it could be if we had more com-

puters) the bisection bandwidth [63] for the entire network is 1, for just the

two patched Intel switches is 36, and for the Gigabit switch is 7. The cross-

bar network [63] bisection calculation procedure is illustrated in Figure D.2.

Channel width [63] for all three configurations is 2 because we have a transmit

and receive signal for each channel. This is ignoring the fact that the channel

also sends a negative signal for both transmit and receive signals at the same

time to reduce emissions. Channel rates [63] run at 100Mbps for the Intel

510T switches and 1Gbps for the Gigabit Switch; however, when evaluating

the entire network as a whole, one must run at the lowest denominator, which

is 100Mbps in this case. Channel Bandwidth for each configuration is simply

two times the Channel Rate because all channel widths were found to be two.

The Bisection Bandwidth is the Bisection Width multiplied by the Channel

Bandwidth, which is 200Mbps, 7.2Gbps, and 14Gpbs for configurations 1, 2

and 3 respectively. Finally, the aggregate bandwidth [63] is the number of

processors multiplied by Channel rate yielding 4.3Gbps, 3.6Gbps, and 7Gbps
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Summary of Throughput Potential
Diameter = 1 (assume the switch is not a hop)
Bisection Width = 1, 36, 7 (discussed above)
Channel Width = 2, 2, 2
Channel Rate = 100Mbps, 100Mbps, 1Gbps
Channel Bandwidth = 200Mbps, 200Mbps, 2Gbps
Bisection Bandwidth = 200Mbps, 7.2Gbps, 14Gbps
Aggregate Bandwidth = 4.3Gbps, 3.6Gbps, 7Gbps

Table D.2 Summary of Pile of PCs (Switches combined, 2 Intel switches, 1 gigabit
switch)

COW Specifications
8, Sun Corporation, Ultra 10s
Solaris 8
Myrinet and ethernet backbone

Table D.3 Specifications for the Cluster of Workstations

for the configurations 1,2 and 3 respectively. All parallel versions run on the

PPCs used configuration 2.

 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 Cutting these lines for the bisection 
width would divide the entire 
network into equal halves.  So, the 
number of cuts needing to be made 
for this or any crossbar network 
would be equal to the number of 
processors.  

Processors 

Figure D.2 An illustration of how to cut the crossbar switches when calculating
bisection width.

Cluster of Workstations The cows is a homogeneous cluster of Ultra 10 Sun

workstations running on a myrnet and ethernet backbone. The backbone choice

is communication library configurable – identified by using myrnet IPs when

communicating over the myrnet backbone and ethernet IPs when communi-

cating over the ethernet backbone.

Diameter is 1 for this network assuming the myrinet switch is not a processor

- no hops. The bisection width is 8 (See Figure D.3). The Channel width,
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COW Summary of Throughput Potential
Diameter = 1
Bisection Width = 8
Channel Width = 2(18)
Channel Rate = 1.28Gbps
Channel Bandwidth = 2.56Gbps
Bisection Bandwidth = 540Gbps
Aggregate Bandwidth = 270Gbps

Table D.4 Summary of Throughput Potential for the Cluster of Workstations )

according to the web site is 18; however, they are assuming that there is a set

of nine wires that transmits and another set of nine wires that receives, so for

pedagogical purposes we set the channel width to two. The Channel Rate for

those 9 wires is given as 1.28 Gbps. Furthermore, the Channel Bandwidth is

twice that 2.56Gbps. The Bisection Bandwidth is the Bisection Width multi-

plied by the Channel Bandwidth, 20.48Gbps. Finally, the aggregate bandwidth

is the number of processors multiplied by Channel rate, 10.24Gbps.
 

M2F-SW8 (8 Port Myrinet Switch PCs 

8 

Figure D.3 An illustration of how to cut the myrnet’s crossbar switches when
calculating bisection width. Assuming that only one wire is cut to
disconnect several processors from any one processor

Networks of Workstations Is a homogeneous Beowulf, running Linux 7.1, with

a 100Mbps backbone and 100Mbps Ethernet sub-nets. The following describes

node configurations:

This NOW’s network summary is described in PPCs’ configuration 1 summary.

SP P3 The SP P3 is an omega network with 4 CPUs per node (Illustrated in Table

D.6. The network is built with 128 switching nodes - not 130. This yields

log2128 or 7 stages in the SP P3 omega network. The extra 2 nodes are used

for control or management. Figure D.4 depicts our omega network.
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Network of Workstation Specifications
17 Node single processor nodes
16 Compute Nodes / 1 Server Node
AMD Processor architecture (1.4MHz)
Work Space 3.2 GByte per Compute Node
768 Megabyte Memory per Compute Node
64 L1 and 256 L1 Cache per processor on Compute Nodes

Table D.5 Specifications for the Network of Workstations )

SP P3 specifications
132 Nodes (4 Processors per Node)
528 Processor Elements(PEs)
130 Compute Nodes / 2 Interactive Nodes
4 Gigabyte Memory per Compute Node
2.4 Terabytes Work Space
RS/6000 Processor architecture (375 MHz)

Table D.6 SP P3 Specifications
 

Out 

In 

In 

1.p 

1.1 7.1 

7.p 

Out P1 

Pp 

P1 

Pp 

Figure D.4 An illustration of a SP P3 omega network configuration.

Assuming that the SP P3 acts as a completely connect network it can be

concluded that the diameter is 1. By reconfiguring the omega network into

two separate networks the bisection width is found by taking the difference of

wires required to build the omega network before and after we separate it into

two omega networks. The following was used to calculate the bisection width

for the SP P3:

Removed wires = (original wires for a 128 nodes - new number of wires for two

64 node networks)

Removed wires = (2 ∗ 128 ∗ lg128)− (2 ∗ 2 ∗ 64 ∗ lg64) = 256
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Summary of Throughput Potential
Diameter = 1
Bisection Width = 256
Channel Width = 1
Channel Rate = 264MB/sec
Channel Bandwidth = 264MB/sec
Bisection Bandwidth = 540Gbps
Aggregate Bandwidth = 270Gbps

Table D.7 Summary of SP P3 Throughput Potential

Buses send and receive by broadcasting their message - laying signals on the

bus that must travel in all directions. Thus, buses have a natural channel width

of 1 unless it is a double decker bus, like the Bristol VRT3, where it can hold up

to almost twice the number of passengers. The channel rate was found on the

IBM web site. I used the I/O channel rate specified for the high node, which

was 264MB/sec for a dual bus. Channel Bandwidth simply equals the channel

rate because we have a channel width of one. The Bisection Bandwidth is the

Bisection Width multiplied by the Channel Bandwidth, which comes out to be

540Gbps. Making the assumption that each of the 128 nodes is the same as

a processor (node = processor), the aggregate bandwidth for the SP P3 was

found to be the number of processors multiplied by Channel rate and equals

270Gbps. A summary of these values are in Table D.7
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Appendix E. fmGA Configuration File

/**************************************************************/

/**************************************************************/

Competitive Template File

’c’ in the first character of line identifies that a configuration follows

’m’ in the first character of line identifies that a objective is defined on that line

The following two Formats are acceptable for a configuration

1) c s e t i

2) m # # # # #

/**************************************************************/

/**************************************************************/

/**************************************************************/

c - (char) identifier that this is a line adding a Competitive Template (CT)

s - (int) the number of sweeps to perform on this particular CT

e - (char) ’f’ retards any evolving of the CT & ’t’ allows evolving to occur

t - (char) type of CT generation:’a’=alpha,’b’= beta,’r’=random,’t’=test

i - (int) is there a provided CT 0=No 1=Yes

/**************************************************************/

/**************************************************************/

/**************************************************************/

m - (char) identifier specifying how the objectives are to be searched

# - (int) There are five objectives. The objectives are grouped according to how

many and which ones are specified on each line.

1) Non Bonded Energy

2) Non Bonded Energy ONE FOUR

3) Independent/dependent Bonds

4) Independent/dependent Bond Angles

E-1



5) Independent/dependent Dihedral angles

/**************************************************************/

Example

m 1 2

m 3 4 5

This creates a multiobjective search with 2 objective functions

/**************************************************************/

/**************************************************************/

/**************************************************************/

c 7 t r 0

m 1 2

m 3 4 5

/********END OF FILE***********/
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Appendix F. Biological Relations to GA Operators

F.1 Biology Background

F.1.1 Reproduction. Reproduction is the method in which life propagates

itself. This occurs in two fashions, sexual and asexual. Sexual requires two gametes,

one male and one female. Asexual is accomplished by one individual alone. Asexual

reproduction is simpler, and is usually only accomplished by simple organisms such

as bacteria and other microbes. The most common form is binary fission. In this

manner, one cell divides to create a new organism. There is no exchange or shuffle

of genetic material. If no mutation occurs, the offspring is an exact copy of the

parent. Sexual reproduction requires the joining of two haploid gamete cells. Each

parent provides 1
2

of the needed genetic material. These haploid cells now having all

the needed genetic material to complete a new organism may then joint to form a

zygote. Sexual reproduction allows for the shuffling of gene values expressed in the

offspring, although it cannot create new gene values.

F.1.2 Competition. As previously discussed, organisms reproduce them-

selves in their environment. Each new individual requires resources in that envi-

ronment. As a population grows, these limited resources become scarce. Different

members of the population are forced to compete for these scarce resources that are

vital to life. Members that possess traits allowing them to gain the resource are

more likely to survive.

F.1.3 Selection. As a result of competition, some individuals receive life

sustaining resources while others do not. The members of the population that have

the ability to more readily gain these resources tend to live longer and reproduce

more. Since these members of the population tend to live longer and reproduce

more, their genetic traits are passed to more offspring at a higher rate, while less

fit individuals cease to pass their less fit code to their progeny. In this manner,
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populations tend to fill their living space with the individuals that are most fit to

survive in that space.

F.1.4 Crossover. Meiosis and Mitosis both can perform the function of cell

division. Cells spend most of their life in this life function, also know as Interphase.

Meiosis is the formation of gametes in sexual reproduction always yielding a doubling

of the chromosome number. There is evidence that, in some species, proteinaceous

thickening occurs within the crossbands of the synaptinemal complex at sites, which

later develop chiasmata. This recombination nodules are thought to play a role in

snipping homologous chromatids at the same site and interchanging the two resulting

chromatid segments. This splicing of a length of maternal chromatid on a paternal

chromatid stump and subsequent annealing of the corresponding paternal chromatid

segment on a maternal stump produce the hybrid chromosomes that contribute to

genetic variability. [31] Mitosis, Asexual Reproduction or Cloning, produces two

daughter nuclei; each with a genetic complement identical to the parent.

F.1.5 Mutation. Mutation is a direct permanent change in a gene. This is

essentially a change in the nitrogen bases that code for the gene in question. This

change may be spontaneous or it may occur because the gene was exposed to a

mutagen. If a mutation occurs in a somatic cell, that mutation cannot be passed to

offspring. However, if the mutation occurs in a germ cell, the offspring may inherit

the new gene values. This is how new allele values come into existence. While the

processes of crossover and sexual reproduction may shuffle the genes possessed by

offspring, mutation is the only manner in which new values for these genes may be

created. There are several mutation methods that occur within an organism:

1. Point Mutation: A single point mutation, also called a base substitution, occurs

when a single nucleotide is replaced with a different nucleotide. It results

in base pair substitution after replication and possibly mutant proteins after

transcription and translation.
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(a) Silent Mutation: This causes no change in protein generation activity.

Most amino acids have multiple encodings. This being said, a mutation

may change the codon in such a way that it still codes for the same amino

acid. This usually occurs in third location of mRNA codon.

(b) Missence Mutation: The change in the codon results in a change in the

amino acid coded for. This may result in harmful or beneficial protein

function.

(c) Nonsense Mutation: The change in the codon results in an erroneous start

or stop codon. This prematurely halts translation, and usually results in

a non-functioning protein.

2. Frame Shift Mutation: Results from the insertion or deletion of one or more

base pairs. This essentially shifts all of the codons in an ”off by one” manner.

Therefore all of the following codons are incorrectly coded for. This usually

results in catastrophic failure of the protein.[6]

F.1.6 Transposition. This is like a cut and paste operation. A transposon

has the ability to break DNA at a target site, insert itself into the target site, and

then replicate the base pairings at the cut to integrate itself into the strand. These

are also known as ”jumping genes.”

F.1.7 Translocation. This is a shift in the location of genetic code from

one segment of the genome to another.

F.1.8 Conjugation. Conjugation is much like sexual reproduction. In this

operation, genetic material from one cell is exchanged with genetic material from

another cell. This usually occurs in simple one celled organisms such as bacteria.
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F.1.9 Inversion. A chromosomal mutation involving the removal of a

chromosome segment, its rotation through 180 degrees, and its reinsertion in the

same location.

F.1.10 Transduction. The movement of genes from a donor to a bacterial

recipient using a phage as the vector. A process whereby a cell can gain access to

and incorporate foreign DNA brought in by a viral particle. Transduction usually

occurs in simple one celled organisms such as bacteria.

F.1.11 Gametogenesis. The formation of gametes requiring the number

of chromosomes in the gamete-forming cells to be halved. This is normally accom-

plished during the process of meiosis and results in the production of haploid cells.

F.1.12 Transcription. The process by which a messenger molecule is cre-

ated from a DNA template. This messenger molecule is particular species of RNA

called messenger RNA (mRNA).

F.1.13 Translation. After transcription (discussed above) is complete,

the mRNA joins with ribosomes of the cytoplasm and other accessory molecules to

synthesize a protein. This process of synthesis is called translation.

F.1.14 Exons. Exons represent message material that get translated into

protein.

F.1.15 Introns. Introns are intervening stretches of DNA lying between

exons. These must eventually be removed from the final mRNA product as they are

not used.

F-4



Appendix G. Building Blocks

Building blocks are partial strings containing “good” information. The concept of

BBs is that based on the Schema Theorem [101] and the idea that “good” solutions

exist. If an analysis is completed on all of these “good” solutions, one finds a number

of loci within these solutions that have the same allele values. For example, one

may find that the string 1X0X, where the X’s represent don’t care bits, typically

produces solutions of “better” fitness than strings of 1X1X. In this case 1X0X would

be considered a “good” BB. The quality of a BB is measured through the fitness

evaluation of the BB in conjunction with the competitive template, i.e. a “better”

fitness value represents a “better” BB. [19]

The pfmGA revolves around the idea that a randomly created population of

individuals of a specified size contain a “good” distribution of ones and zeros across

the various bit positions. Since there is a “good” distribution of bits across the

population members, “good” BBs also exist in the population. If these “good” BBs

are found and through the genetic process of recombination are combined, the result

is that the algorithm generates “good” solutions to the problem.

The building block analysis is performed in an attempt to identify the building

block sizes that result in finding better solutions for Polyalanine. In this paper, a

BB is a partial string representing bits from one, some, or all of the dihedral angles

that each chromosome represents. The BBs are not restricted to be contiguous bits

from the chromosomes but instead can be non-contiguous bits from the chromosome.

Therefore if one purely looks at just one BB it may represent a whole dihedral angle

or just various bits of multiple angles.

The BB analysis conducted covers a variety of BB sizes and compares the

results to determine which size produces the best statistical results. One expects

a BB size of 35 bits to yield the best because it is known that Polyalanine folds

into an alpha helix [12] structure and Alpha helix proteins are known a priori to
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have 3.5 residues per turn [8]. Furthermore, it can be projected that 10 meaningful

bits represents dihedral angles making up one residue; therefore, 3.5 residues can be

represented by 35 bits.
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Appendix H. Other General AFIT Approaches

H.1 Combined Algorithms (local search)

There are many different mechanisms that can be added to any one of the

aforementioned algorithms. Normally mechanism to help a GA search are memetic

[78] in nature where there is a local search conducted after reaching a point in the

execution of the algorithm where the algorithm has found good solutions. The fol-

lowing approaches have been applied to AFIT’s fmGA: Lamarckian and Baldwinian

(See Appendix J for explanation of these approaches). In addition to local search

there can be other mechanisms applied to ensure a good spread of population mem-

bers are held – this is called Niching and uses the following two approaches to ensure

a good spread is maintained: Crowding and Sharing. These local search techniques

employ the conjugate gradient calculation in order to find the best local solution.

The conjugate gradient technique is simply taking the derivative of the energy func-

tion to find out the concavity of the solution. In doing so, further calculations can

follow find out if the solution is in a local minimum or maximum, using the concavity

rules of calculus. These techniques were studied by Captain Robert Gaulke [35]. The

conjugate gradient using Lamarchkian and Baldwinian approaches are fmGA code

options used in this thesis investigation.

The fmGA is a complicated algorithm. Increasing the complexity of AFIT’s

fmGA is our attempt to increase its efficiency and affectiveness. Furthermore, AFIT’s

fmGA has numerous settings and mechanisms that are discussed in detailed in Chap-

ters 3, 4 and 5. Following Captain Gualke’s memetic approaches in 1999, Captain

Steven R. Michaud also utilized the fmGA in attempts to identify good building

blocks that matched secondary structure patterns. His research followed the NX

(INTEL) version of the fmGA code which was dated; however, semi-effective.
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H.2 Hybridized GA

Captain Charles E. Kaiser followed after Captain Gaulke’s work by using Hy-

bridized GA approached to solving the PSP problem in 1995. Kaiser’s work does

not fit the usual hybridized approaches where the attempt is to use a GA tool in

conjunction with heuristic solvers or other mechanisms. Furthermore, the hybrid GA

used in the case of Kaiser’s thesis is simply solutions gained by a GA supported by

his own analytical skills. [1] discusses the appropriateness and need for a heuristic

solver to a GA approach – making Kaiser’s work [50] important; however, better

solutions weren’t discovered. In addition to Kaiser’s hybrid model, he also studied a

”farming model” and ”island model” parallel GA (PHGA) used to increase efficiency

of his hybrid GA.

H.3 Real Valued GA

In addition to Kaiser’s work with hybridized GAs, he also attempted to solve

the PSP problem with a real valued GA and found better results than a competitor

(Scheraga, et al) [50]; however, today we know that neither method produced supe-

rior solutions. This approach was innovative to the PSP problem; however, there are

many other implementations of the real valued GA [73]. In fact, Kaiser integrated

Michalewicz’s real valued GA into the protein model and CHARMm fitness func-

tion. A real valued GA imposes real numbers as a replacement for the binary strings

used within the fmGA. Real valued GAs have solution granularity advantages over

binary GAs. For instance, a GA using binary numbers have limited ranges. They

can only take on the following values: 0, 21, 22, . . . , and 2n – where n is the number

of bits available for each number. Whereas, real valued GAs have only the limits of

the computer hardware available to represent each number. For the PSP problem,

this kind of advantage could be the difference in getting a semi-optimal solution and

getting the true solution. Moreover, if your GA cannot represent the answer because

the problem has been oversimplified, the GA never finds the optimal solution.
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H.4 Linkage Learning GA

The Linkage Learing Genetic Algorithm was designed by David Goldberg’s

research group to ”solve problems of bounded difficulty quickly, reliably, and ac-

curately” [43]. In an attempt to mimic the linkage between the DNA to Protein

mapping, this algorithm hunts for advantages in ”tight linkage” exploitation. Fur-

thermore, it applies a new two-point crossover operator to a new chromosome map-

ping [20]. This operator uses the idea of Transposition1 for reproduction by grafting

a chromosome into a recipient at a random location. Overall the algorithm works

similarly to the sGA; however, where the sGA failed, this algorithm picks up the

lost linkages. These lost linkages are important to finding a path from suboptimal

solutions to semi-optimal solutions.

1This is like a cut and paste operation. A transposition has the ability to break DNA at a target
site, insert itself into the target site, and then replicate the base pairings at the cut to integrate
itself into the strand. These are also known as ”jumping genes.”
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Appendix I. Basic Evolutionary Algorithmic Approaches Justified

I.1 Evolutionary Strategies

Evolutionary Strategies originated in Germany where Bienert, Rechenberg and

Schwefel applied it to optimizing the drag on a pipe or nozzle. They achieved good

semi-optimal solutions with the application of ES. Their simple ES had merely one

population member where they applied mutation to find more optimal solutions.

I.1.1 Mutation. Moreover, this first ES used a simple two membered, one

n-dimensional, real-valued vector of object variables which is mutated by applying

identical standard deviation to each variable. This straight forward local search

mechanism can be effective on the right problem; however, for the PSP problem, I

suggest the application of a more state-of-the-art ES that has a self-adapting mech-

anism optimizing both the parameter and objective variables. The self-adapting

ES uses autocorrelation functions to allow for the mutation area to be stretched in

directions that are mathematically suspected to include areas of the fitness land-

scape which might have better solutions. This is emphnot to say that, because the

covariance and standard deviation has adapted to allow for the finding of better

solutions, the algorithm must find better solutions. It still is a stochastic mutation

function that attempts to condensate for the areas where better answers are thought

(statistically) to be.

I.1.2 Recombination. This mechanism has two operators used to accom-

plish recombination. One is sexual and the other is panmictic. The first is a sexual

operator that randomly selects two parents each time and creates one offspring. The

second is a panmictic operator meaning the first parent is selected and then held on

to for mating with many other parents.
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I.1.3 Selection. Selection within ES are deterministic. Normally a (µ + λ)

would be the selection mechanism used; however this has been shown to slow the

self-adaptation mechanism with respect to the strategy parameter. Therefore, (µ, λ)

is the selection mechanism used in solving the PSP problem.

I.1.4 Application. Application of ES to the PSP problem is kind of straight

forward. The encoding of the protein from the phenotype (protein) to the genotype

ending with the entire protein specified, atom by atom, in groups within dihedral

angles. These dihedral angles are then ladled to hold specified places as real numbers

in the chromosome.

Evolutionary Strategy Algorithm

t = 0

Initialize population, P (0), = {~d1, ~d2, ..., ~dµ}εIµ

di : are filtered with a feasibility function using constraints

Evaluate P (0) :where each member of the population is evaluated

while (Generations are not satified) do

recombine

mutate

evaluate

select

t = t + 1

od

It should be noted that the distributions used for the mutations should take

into account that they can go to a maximum of 360 degrees – and even less if the

Ramachadrin Plots are applied. Therefore, the distribution needed might be that of

a gama distribution.
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I.2 Evolutionary Programming

Evolutionary Programming (EP) is similar to that of ES. Mutation is nor-

mally distributed and have some self-adaptation scheduled into genotype mutations.

Again, a state-of-the-art implementation of this EP called meta-EP should be used

in solving the PSP problem.

I.2.1 Mutation. The asexual mutation operator mutates the population

member with a standard deviation that is obtained for each component (dihedral

angle) of the object variable vector as the square root of a linear transformation of

the fitness function. In overcoming tuning problems as the algorithm runs, they have

added a vector of variances per individual. This vector is very much similar to the

parameter variables for the ES.

I.2.2 Recombination. EP does not use crossover or recombination, but

relies heavily upon the mutation operator discussed above.

I.2.3 Selection. The asexual essence of the mutation operator the offspring

become the size of the population. Additionally, tournament selection is applied

with ranking (in descending order).

I.2.4 Application. Considering this method is so similar to that of ES, it

can be applied to the PSP problem in a similar way as well. The encoding of the

protein into dihedral angles is applied again and then the real values are used within

the chromosomes. The algorithm looks the same as the ES algorithm, but you remove

the recombination. There is nothing special and it should be that Evolutionary

Programming should be a sub class of the Evolutionary Strategies.
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I.3 Genetic Algorithms (GA)

I.3.1 fast messy Genetic Algorithm (fmGA). The first step to applying

a GA is to transform the problem domain into a fixed length binary string - called

chromosomes. In other words, a solution should be representable by one chromosome.

Individual elements of a chromosome are called features - corresponding to the genes

of a chromosome. Feature values are the values that one feature may take on - these

represent alleles of a gene. Finally, the set of every allele is the genetic alphabet

[2]. After a discretized encoding scheme is applied to the problem, there must be a

way to decode and evaluate the merit of a specific chromosome, or solution. This

is normally called the fitness function - it checks the fitness or merit of a solution.

Its main purpose is to give an indicator if one chromosome is better than another.

Unfortunately, fitness evaluation causes a decode to occur and a high computational

analysis of the chromosome usually costing the algorithm in time (Such as the fitness

function in our GA used to search the PSP problem energy landscape).

The main routine in a GA, after encoding the problem, builds a population

of chromosomes. It then selects from the current population and uses reproduction,

crossover and mutation to build new population members - each time evaluating the

newly created chromosome’s fitness. Upon evaluation of a better chromosome, that

better chromosome is placed into the population. The routine then repeats itself.

Figure 3.7 illustrates this cycle. The dotted lines indicate the barrier between the

real solution or problem domain and the encoded solution or chromosome domain.

This GA can also be referred to as a steady state GA where the population size

remains the same throughout the execution of the program.

I.3.2 Application.

fast messy Genetic Algorithm

Stochastic-Search-GA Algorithm Specifications Extended Iterative Form
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Step(0) Initialization Randomly generate a solution Pi

Set number Max tries

Set t tries to zero

Set Best to highest number possible

Step(1)

Generator Next State using Population Pop

Step(2)

If feasible(Pt) then add to Pop

If f(Pt) < f(Best) then Best = Pt

Step(3)

If Max tries > t then Stop

Goto Step 1

I.4 Genetic Programming

It is most challenging to get a computer to accomplish a task without coaching

it in how to achieve that task. Genetic Programming (GP) embodies this concept of

a computer learning how to program itself, or auto programming. GP does this by

genetically developing or allowing a population to evolve using Darwinian’s natural

selection along with biologically understood operations. These operations include,

but are not held exclusively to the following: reproduction, crossover, mutation, and

architecture-altering operations patterned after gene duplication and deletion.

I.4.1 Description.

I.4.1.1 Population Creation. The auto programming begins by ran-

domly generation of many computer programs. These computer programs may be

in the form of mathematical logic (represented by reverse polish) or in the form of

program modules or sections. In the case of applying GP to the PSP problem, the
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modules could be in the form of localized search operators or different GAs alto-

gether. So we begin by massively producing combinations of GAs that can work on

a similar problem. We can use differing GAs (simple GA, messy GA, fast messy GA,

etc) and operators (conjugate gradient, local twist, sweep, etc) to swap out after a

conclusive run on a particular configurations. I know a picture would be nice here,

but I can’s get latex to play nice. Basically, for terminals you may have an entire GA

or just an operator. A higher level GP can manage each configuration and keep track

of what configurations gave the best result. The population are different for each

differing configurations generated by the operators in GP. The fitness evaluation of

each population member are time intensive, but eventually it must yield a result. To

run an experiment of this proportion, one must be committed to run it for a year or

so on today’s HPCs.

I.4.1.2 Reproduction. This operator simply selects the next genera-

tion based on fitness values. Once all population member have been evaluated and

other operations have been applied – configurations finding the best fitness (lowest

energy) are moved to the next population pool.

I.4.1.3 Crossover. This operator is sexual reproduction after the

selection of two parental programs. In our case, this would be the selection of two

configurations. Crossover points are then randomly chosen in each parent. The

subtree at the crossover point for the first parent is deleted and replaced with that

at the second parent’s crossover point subtree.

I.4.1.4 Mutation. The mutation operator selects a configuration to

mutate based on fitness. Randomly selects a mutate point, deletes the subtree at

that point, and grows another subtree at the mutation point to replace it.

I.4.1.5 Architecture-Altering Operations. This operator dynamically

allows the removal and insertion of sub-routines within programs genetically. This
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is to allow for the actual program to be modified or shaped in a way so that is may

adjust to solving the problem. Ultimately, this operator relieve the programmer for

writing engrained specifications for a program. This operator would be at the heart

of how I’m suggesting the PSP problem to be solved using GPs. This operator would

mutate sub-routines that are already being ’wholly’ crossed and mutated in and out

of population members.
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Appendix J. Data and task decomposition design

J.1 Multi Objective fmGA Data and Task decomposition

Data and task decomposition for the MOfmGA selected can be simple of com-

plex depending on the design. The fmGA used to solve the PSP problem at AFIT

can be made to be either single program single data (SPSD) or single program multi-

ple data (SPMD). With the addition of farms (new mechanism using fine granularity

parallelism), the program has now become able to be multiple program multiple data

(MPMD). It is interesting to have the different models for several reasons. When

the GA runs using the single data model, the GAs running in parallel are generating

populations separately from one another and only interact when a migration of a

good population occurs with some probability. This is a good model to use when

communication cost is high. Furthermore, if you had a shared memory machine,

communication does not need to occur it more advantageous to use a MPMD setup

where data does not have to be transferred and data pipeling can be utilized (re-

quirement of control parallelism) - see the description of the farming model of the

fmGA.

There are many design issues with making a GA run in parallel: Level at which

you want to parallelize the GA (GA itself, operators, fitness evaluation, population

pool), distributed system type (multi-computer or multi-processor), memory setup

(shared or distributed), network interconnectivity (Mesh, Hypercube, or Ring), and

inter-process communication setup between nodes or processors to name a few. Von

Neumann-based parallel processing systems are categorized accordingly: Multiple

Instruction Multiple Data (MIMD), Single Instruction Multiple Data (SIMD), Mul-

tiple Instruction Single Data (MISD ), or Single Instruction Single Data (SISD)

paradigm [63]. Additionally, there are special cases under categories. For example,

MIMD can be Single Program Multiple Data (SPMD) or Multiple Program Multiple

Data (MPMD). MIMD normally consists of several different processors capable of
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running different instructions on different data sets independently. AFIT has this

type of setup, two multi-computer clusters called the Pile of PCs and COWs. In

addition to the systems at AFIT, we have available at our disposal the SP-3 at the

MSRC. The SP-3 is a multi-processor machine with shared memory and many pro-

cessors. So, there is a need for a parallel implementation of this GA. Currently there

are 3 brands of the parallel version of the fmGA used at AFIT:

1. Independent: The normal implementation of the fmGA or MGA using a single

node and processor.

2. Combined: each processor sends best-found building blocks to the master pro-

cessors at the end of each juxtaposition phase.

3. Global combine: each processor exchanges their best building blocks with all

other processors. This is called Global exchange. After that, every processor

executes an independent juxtaposition phase on a copy of global population.

Furthermore, there are three models that typify how future designs of PGAs

would function [9]. They are as follows:

1. Island Mode (Neither Task nor Data Decomposition) This being the simplest

model where the population is divided into subpopulations that are distributed

among the different processors. Evolution is conducted in parallel at each

processor independent from all other processors; however, at certain intervals

migration occurs between processors. Migration is the passing of solutions

between processors. This model should provide near linear speedup [13] [62].

Normally, the Island model is used on coarse grained or MIMD architectures

[63]. This model is a good candidate for running the PSP problem using our

fmGA. Furthermore, it is our 3rd brand of the fmGA at AFIT - called Global

Combine.

2. Neighborhood Model (Data Decomposition) This model splits the population

up spatially into a two-dimensional or three-dimensional grid. Each string is
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placed on an individual processor, forcing the crossover and selection operators

to be redesigned to allow for operations across multiple processors. Normally,

this is implemented on fine-grained or SIMD architectures [63]. This model is

our 2rd brand of the fmGA at AFIT - called Combined.

3. Farming Model (Task Decomposition) Farming here is used in the context of

manufacturing, or to farm out work [25]. In this model there is a Boss, or

head node, and workers. The head node essentially farms out the work to each

worker. The head node is responsible for keeping track of idle workers and load

balancing schemes. This model is exploited with the new mechanism to have

farm evaluate the fitness of chromosomes built from within the cut and splice

process during the juxtaposition phase.

J.1.1 Design of operators and parameter values. There are many different

mechanisms that can be added to any one of the aforementioned algorithms. Nor-

mally mechanism to help the search are memetic in nature where there is a local

search accomplished after reaching a point in the execution of the algorithm where

the algorithm has found whole solutions. The following approaches have been ap-

plied to AFIT’s fmGA: Lamarckian and Baldwinian. In addition to local search there

can be other mechanisms applied to ensure a good spread of population members

are held - this is called Niching and uses the following two approaches to ensure a

good spread is maintained: Crowding and Sharing. These local search techniques

employ the conjugate gradient calculation in order to find the best local solution.

The conjugate gradient technique is simply taking the derivate of the energy function

to find out the concavity of the solution. In doing so, further calculations can follow

find out if the solution is in a local minimum or maximum, using the concavity rules

of calculus.

1. Lamarckian: The Lamarckian evolution technique utilizes a local search for

improving a current population member. In addition, it also places this new-
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found optimal fitness and string into the next generation. This can be handy.

After selection has been performed, in the fmGA, an additional local search

could be performed to make sure that the local best is obtained and passed

onto the next generation. [20]

2. Baldwinian: The Baldwinian technique applies the combination of learning

plus evolution. Thus, by teaching the next generation a new skill it can pass

down to the next generation; likewise, the next generation does not automati-

cally get the skill (not born with it because the previous generation has learned

it). Essentially, this is applied to the fmGA by conduction a local search and

finding a new optimal fitness associated with a particular string. The new

lower fitness value is then updated for that string, but the string evaluates to

this new lower fitness value is not replacing the starting string (meaning that

the locally searched minimum is at a lower fitness value than the actual string

that has taken on this new lower fitness value). [35]

3. Niching [35] Niching stems from nature where different species then to exploit

separate niches (sets of environmental features) that other organisms have

little or no interest rather than competing directly for the same resource. The

basic idea behind this technique is that it is ill advised to have all population

members having nearly the same value; otherwise, the algorithm gets stuck in

some local minimum. Two niching techniques are crowding and sharing.

Crowding: Crowding is an operator that keeps track of string patterns,

replacing any string that overlaps another population member. By replacing

these similar strings, diversity and exploration is enhanced as well as allowing

more species to evolve.

Sharing: Sharing is reducing duplicate member fitness based on how close

a member is to other members. This can be tracked and employed using the

hamming code distance function to determine how close strings are to one

another.
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J.1.2 Implementation. The implementation of the MOfmGA is a mod-

ified version of the already working fmGA. This code is used mostly because the

CHARMm structs and variables are already integrated into the algorithm. Addi-

tionally, reuse of code is the best way to do research because it allows the researcher

to focus on the variables entered into the algorithm, not the writing of the code.

Moreover, writing code is not considered research at all. Unfortunately, the inte-

gration of the multiple objective structs into a single objective code is a significant

change and has proved to be quite intense.
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Appendix K. Multiobjective Discussion

K.1 Multiobjective Optimization

The process of finding the global maximum or minimum of any function is

referred to as Global Optimization. In general, this is presented in Definition 1 as

stated in Bäck [4]:

Definition 1 (Global Minimum): Given a function f : Ω ⊆ Rn → R, Ω 6= ∅,
for ~x ∈ Ω the value f ∗ , f(~x∗) > −∞ is called a global minimum if and only if

∀~x ∈ Ω : f(~x∗) ≤ f(~x) . (K.1)

Then, ~x∗ is the global minimum solution(s), f is the objective function, and the set

Ω is the feasible region. The problem of determining the global minimum solution(s)

is called the global optimization problem. ¤

This formulation must be modified to reflect the nature of multiobjective prob-

lems where there may not be one unique solution but a set of solutions found through

the analysis of associated Pareto Optimality Theory. Many times multiobjective

problems force the decision maker to make a choice which is essentially a tradeoff

of one solution over another in objective space. Before we present the associated

multiobjective definition, we must define what a MOP is. Multiobjective problems

are those where the goal is to optimize n objective functions simultaneously. This

may involve the maximization of all n functions, the minimization of all n functions

or a combination of maximization and minimization of these n functions. A MOP

and a MOP global minimum (or maximum) is formally defined by Van Veldhuizen

as [97]:

Definition 2 (General MOP): In general, a MOP minimizes (or maximizes)

F (~x) = (f1(~x), . . . , fk(~x)) subject to gi(~x) ≤ 0, i = 1, . . . , m, ~x ∈ Ω. An MOP
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solution minimizes the components of a vector F (~x) where ~x is a n-dimensional

decision variable vector (~x = x1, . . . , xn) from some universe Ω. ¤

Definition 3 (MOP Global Minimum): Given a function F : Ω ⊆ Rn → Rk,

Ω 6= ∅, k ≥ 2, for ~x ∈ Ω the set PF∗ , F (~x∗i ) > (−∞, . . . ,−∞) is called the global

minimum if and only if

∀~x ∈ Ω : F (~x∗i ) ¹ F (~x) . (K.2)

Then, ~x∗i , i = 1, . . . , n is the global minimum solution set (i.e., P∗), F is the multiple

objective function, and the set Ω is the feasible region. The problem of determining

the global minimum solution set is called the MOP global optimization problem. ¤

This MOP consists of k objectives reflected in the k objective functions, m

constraints on the objective functions and n decision variables. The k objective

functions may be linear or nonlinear in nature. The evaluation function, F : Ω −→
Λ, is a mapping from the decision variables (~x = x1, . . . , xn) to output vectors

(~y = a1, . . . , ak) [97].

MOPs typically consist of competing objective functions, which may be inde-

pendent or dependent on each other. An example of this is a company’s quest to

purchase a backbone for their computer network that provides the greatest through-

put at the least monetary cost. These objectives are highly dependent on each other

as increased cost brings increased throughput and vice-versa.

It is necessary to define additional terminology to remain consistent with the

terminology used in the EA field. The term objective is used to refer to the goal of

the MOP to be achieved and objective space is used to refer to the coordinate space

within which vectors resulting from the MOP evaluation are plotted [97].

K.1.1 Pareto Terminology. The concept of Pareto Optimality is integral

to the theory and analysis of MOPs. A way to determine if one solution is “better”

than another is a necessity here as well as in all problems. Pareto concepts allow for
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the determination of a set of optimal solutions in MOPs. Although single-objective

optimization problems may have a unique optimal solution, MOPs usually have a

possibly uncountable set of solutions, which when evaluated produce vectors whose

components represent trade-offs in decision space. Some key Pareto concepts, for

minimization MOPs, are defined mathematically by Van Veldhuizen as [97]:

Definition 4 (Pareto Dominance): A vector ~u = (u1, . . . , uk) is said to domi-

nate another vector ~v = (v1, . . . , vk) (denoted by ~u ¹ ~v) if and only if u is partially

less than v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. ¤

Definition 5 (Pareto Optimality): A solution x ∈ Ω is said to be Pareto

optimal with respect to Ω if and only if there is no x′ ∈ Ω for which ~v = F (x′) =

(f1(x
′), . . . , fk(x

′)) dominates ~u = F (x) = (f1(x), . . . , fk(x)). The phrase “Pareto

optimal” is taken to mean with respect to the entire decision variable space unless

otherwise specified. ¤

Definition 6 (Pareto Optimal Set): For a given MOP F (x), the Pareto optimal

set (P∗) is defined as:

P∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω F (x′) ¹ F (x)}. (K.3)

¤

Definition 7 (Pareto Front): For a given MOP F (x) and Pareto optimal set

P∗, the Pareto front (PF∗) is defined as:

PF∗ := {~u = F (x) = (f1(x), . . . , fk(x)) | x ∈ P∗}. (K.4)

¤

Pareto optimal solutions are those solutions within the search space whose

corresponding objective vector components cannot be all simultaneously improved.
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These solutions are also termed non-inferior, admissible, or efficient solutions, with

the entire set represented by P∗. Their corresponding vectors are termed nondom-

inated; selecting a vector(s) from this vector set (the Pareto Front set PF∗) im-

plicitly indicates acceptable Pareto optimal solutions (genotypes). These solutions

may have no clearly apparent relationship besides their membership in the Pareto

optimal set. It is simply the set of all solutions whose associated vectors are non-

dominated; it is stressed here that these solutions are classified as such based on

their phenotypical expression. Their expression (the nondominated vectors), when

plotted in criterion (phenotype) space, is known as the Pareto front [97, 104].

A MOEA’s complex structure can lead to confusion in discussing the algorith-

mic process that takes place. To prevent further inconsistencies in discussions of

MOEAs, Van Veldhuizen [97] developed Pareto terminology to clarify MOEA dis-

cussions. He stated at any given generation of a MOEA a “current” set of Pareto

optimal solutions (with respect to the current MOEA generational population) exists

and is termed Pcurrent (t), where t represents the generation number. There are also

a number of MOEAs that use a secondary population, also referred to as an archive

or an external archive, to store nondominated solutions found through the gener-

ations [98, 97]. Since this secondary population contains Pareto optimal solutions

generated at a certain point in time, each time another point is considered for ad-

dition to the secondary population, the point must be looked at for non-dominance

with respect to the points currently in the secondary population. This secondary

population is denoted Pknown (t). The t reflects the potential changes to the sec-

ondary population as the MOEA executes. Additionally, Pknown (0) is defined as the

empty set (∅) and Pknown alone as the final set of Pareto optimal solutions returned

by the MOEA at termination [97, 104].

Different secondary population storage strategies exist; the simplest is when

Pcurrent (t) is added at each generation (i.e., Pcurrent (t)
⋃

Pknown (t−1)). At any given

time, Pknown (t) is thus the set of Pareto optimal solutions yet found by the MOEA
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through generation t. Of course, the true Pareto optimal solution set (termed Ptrue)

is not explicitly known for problems of any difficulty. Ptrue is defined by the functions

composing an MOP; it is fixed and does not change. Because of the manner in which

Pareto optimality is defined Pcurrent(t) is always a non-empty solution set [97].

Pcurrent (t), Pknown , and Ptrue are sets of MOEA genotypes where each set’s

phenotypes form a Pareto front. We term the associated Pareto front for each of

these solution sets as PFcurrent (t), PFknown , and PFtrue . Thus, when using an

MOEA to solve MOPs, the implicit assumption is that one of the following holds:

Pknown = Ptrue, Pknown ⊂ Ptrue, or PFknown ∈ [PFtrue, PFtrue + ε] over some norm

(Euclidean, RMS, etc.).

Solutions on the Pareto Front represent optimal solutions in the sense that

improving the value in one dimension of the objective function vector leads to a

degradation in at least one other dimension of the objective function vector. This

forces the decision maker to make a tradeoff decision when presented with a number

of optimal solutions for the MOP at hand, i.e. the Pareto Front. There exists a

difference in terminology between an acceptable compromise solution and a Pareto

Optimal Solution [28]. The decision maker typically chooses only one of the as-

sociated Pareto Optimal solutions, ~u ∈ PF∗, as being the acceptable compromise

solution, even though all of the Pareto Optimal solutions are optimal. The decision

maker bases this solution choice off of which solutions take into account the human’s

preference. The human preference factor forces engineers and scientists to attempt

to find all of the points on the Pareto Front since all points are not weighted equally

in the decision maker’s mind.
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Appendix L. Data from multiple competitive template experiments on

MET
MET Data for Multiple Competitive Template Experiment

(Group) Exper BB (A)Alpha (B)Random (C)Beta (D)ARB (E)ARBpan
A 1 6 -28.278737 -22.889378 -24.905582 -28.291876 -28.300307
A 1 7 -28.309026 -22.97107 -24.928189 -28.3079 -28.308393
A 1 8 -28.342692 -23.034342 -24.943951 -28.34466 -28.32919
A 1 9 -28.360435 -23.108851 -24.951829 -28.35556 -28.364017
A 1 10 -28.367423 -23.134461 -24.96031 -28.362285 -28.397825
A 1 6 -28.379291 -23.190566 -24.989816 -28.370676 -28.411875
A 1 7 -28.385696 -23.23941 -25.381038 -28.384995 -28.414762
A 1 8 -28.411863 -23.269299 -25.661887 -28.413582 -28.425261
A 1 9 -28.433324 -23.329624 -25.673459 -28.429047 -28.441122
A 1 10 -28.470366 -24.28722 -25.682582 -28.446335 -28.471737
A 1 6 -28.492738 -25.148008 -25.704999 -28.458927 -28.484505
A 1 7 -28.506666 -25.630141 -25.734522 -28.469983 -28.492895
A 1 8 -28.523697 -26.201578 -25.743283 -28.477254 -28.500351
A 1 9 -28.530769 -26.487595 -25.753653 -28.480844 -28.508845
A 1 10 -28.68424 -29.499787 -25.838175 -28.912087 -29.524363
A 2 6 -28.416712 -5.841503 -26.926519 -28.472992 -26.926107
A 2 7 -28.50404 -7.562974 -26.973734 -28.528579 -27.055564
A 2 8 -28.759294 -8.790183 -27.029423 -28.625501 -27.118186
A 2 9 -28.871578 -12.098284 -27.130081 -28.662987 -27.201811
A 2 10 -28.912501 -20.117619 -27.162811 -28.688526 -27.38164
A 2 6 -28.947007 -21.732841 -27.307008 -28.712064 -27.451884
A 2 7 -28.983896 -22.771764 -27.445468 -28.731836 -27.548983
A 2 8 -29.11341 -23.106475 -27.517872 -28.758657 -27.58493
A 2 9 -29.254266 -23.862013 -27.548043 -28.771714 -27.772729
A 2 10 -29.347353 -24.429999 -27.560085 -28.802399 -28.078183
A 2 6 -29.388809 -24.648894 -27.569261 -28.821688 -28.120457
A 2 7 -29.404285 -24.812491 -27.585248 -28.865759 -28.150927
A 2 8 -29.424638 -24.989525 -27.5971 -28.914347 -28.18669
A 2 9 -29.452357 -25.087235 -27.61398 -28.963739 -28.205493
A 2 10 -30.023546 -26.3358 -27.727388 -30.031059 -29.005247
A 3 6 79.000315 -25.38384 -26.691103 -27.437654 -24.078155
A 3 7 29.476581 -25.496948 -26.70405 -27.492608 -24.353812
A 3 8 22.08554 -25.532022 -26.716553 -27.590383 -24.654618
A 3 9 10.057835 -25.574089 -26.843654 -27.651587 -24.816164
A 3 10 8.485627 -25.636066 -26.849769 -27.757783 -24.92522
A 3 6 7.520392 -25.820151 -27.062184 -27.797426 -25.074039
A 3 7 4.351143 -25.863905 -27.173046 -27.825934 -27.262767
A 3 8 1.080246 -25.895067 -27.257909 -27.864593 -27.670463
A 3 9 -2.587026 -25.942412 -27.339293 -27.963511 -27.986986
A 3 10 -6.85195 -26.015832 -27.392019 -28.069859 -28.354818
A 3 6 -8.394699 -26.038136 -27.414542 -28.169492 -28.639541
A 3 7 -9.416877 -26.070735 -27.424831 -28.198846 -28.697869
A 3 8 -10.16397 -26.085267 -27.441537 -28.231767 -28.784343
A 3 9 -11.523245 -26.114748 -27.454024 -28.26861 -28.812674
A 3 10 -31.460474 -31.551802 -27.888819 -31.725017 -29.739632
A 4 6 61377.21149 -20.440169 -28.65729 -29.857544 -28.402071
A 4 7 61376.48557 -21.606168 -28.746781 -29.876073 -28.410378
A 4 8 61375.46262 -22.142392 -28.798769 -29.891933 -28.42032
A 4 9 61374.72659 -22.368954 -28.878908 -29.918086 -28.458648
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A 4 10 87.910881 -22.85427 -28.982138 -29.933531 -28.51818
A 4 6 38.873369 -23.216853 -29.087247 -29.93892 -28.560447
A 4 7 17.501835 -24.662159 -29.18398 -29.951425 -28.579357
A 4 8 15.511864 -25.100213 -29.272844 -29.959467 -28.590051
A 4 9 15.189762 -25.629695 -29.481002 -29.971166 -28.615457
A 4 10 14.961465 -25.945673 -29.632564 -29.981395 -28.620046
A 4 6 14.941421 -26.513462 -29.791052 -30.10208 -28.624681
A 4 7 14.910948 -26.729088 -29.925289 -30.240974 -28.632895
A 4 8 14.809754 -26.864212 -29.961172 -30.305014 -28.641967
A 4 9 14.711298 -26.918393 -30.025029 -30.321806 -28.672372
A 4 10 -29.17127 -27.909507 -30.671037 -31.006006 -28.926281
A 5 6 -30.121645 -9.337104 -27.250624 -29.104712 -28.250655
A 5 7 -30.272421 -9.464636 -27.301467 -29.124895 -28.253292
A 5 8 -30.423159 -9.488237 -27.330906 -29.139452 -28.25493
A 5 9 -30.515702 -9.509529 -27.649159 -29.165999 -28.257215
A 5 10 -30.57726 -9.534357 -27.784653 -29.205454 -28.258735
A 5 6 -30.659802 -9.580557 -27.962126 -29.239348 -28.259766
A 5 7 -30.701935 -9.635807 -28.008511 -29.257356 -28.263435
A 5 8 -30.753226 -9.654157 -28.033612 -29.27559 -28.264618
A 5 9 -30.788998 -9.670796 -28.063183 -29.28794 -28.266738
A 5 10 -30.811702 -9.759652 -28.112512 -29.308784 -28.271522
A 5 6 -30.826833 -9.878034 -28.135888 -29.326165 -28.275765
A 5 7 -30.8614 -11.683124 -28.144672 -29.335784 -28.279479
A 5 8 -30.87636 -14.772554 -28.155536 -29.346989 -28.284411
A 5 9 -30.915044 -17.182775 -28.170704 -29.36475 -28.289892
A 5 10 -31.715513 -24.299745 -29.088288 -30.755775 -28.490466
A 6 6 -24.959809 -25.520963 -22.664674 -27.772418 -28.951607
A 6 7 -25.099421 -25.567363 -23.090499 -28.514888 -29.014348
A 6 8 -25.210482 -25.643034 -23.577252 -28.83857 -29.06538
A 6 9 -25.510843 -25.724013 -23.612413 -29.225132 -29.095258
A 6 10 -25.639811 -25.739837 -23.657753 -29.534768 -29.130386
A 6 6 -25.805228 -25.746187 -23.66805 -29.660103 -29.162115
A 6 7 -25.919119 -25.898756 -23.687378 -29.734617 -29.178253
A 6 8 -25.994865 -26.008221 -23.698292 -29.792857 -29.369362
A 6 9 -26.117577 -26.172263 -23.7129 -29.932776 -29.985312
A 6 10 -26.338183 -26.254907 -23.723091 -29.990284 -30.284043
A 6 6 -26.436053 -26.306821 -23.730327 -30.008719 -30.40848
A 6 7 -26.511121 -26.40312 -23.738767 -30.041085 -30.474269
A 6 8 -26.764143 -26.4333 -23.752405 -30.107225 -30.562774
A 6 9 -26.844581 -26.478641 -23.758425 -30.13061 -30.646331
A 6 10 -30.811512 -26.976863 -23.852029 -30.556677 -31.367586
A 7 6 -27.859449 -25.740542 -27.957889 -28.873577 -27.540423
A 7 7 -27.946052 -25.942204 -27.960599 -28.961971 -27.56524
A 7 8 -27.974035 -26.118785 -27.961785 -29.088642 -27.583422
A 7 9 -28.092053 -26.397452 -27.964526 -29.26427 -27.59965
A 7 10 -28.363535 -26.517013 -27.966853 -29.457894 -27.607729
A 7 6 -28.818672 -26.648663 -27.968204 -29.815984 -27.619557
A 7 7 -29.1646 -26.767441 -27.968944 -29.968379 -27.630014
A 7 8 -29.401416 -27.015739 -27.969992 -30.150273 -27.652205
A 7 9 -29.608784 -27.146787 -27.970661 -30.253471 -27.661772
A 7 10 -29.673834 -27.233437 -27.97113 -30.278196 -27.670112
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A 7 6 -29.691154 -27.284272 -27.971851 -30.315802 -27.683672
A 7 7 -29.722259 -27.328041 -27.972659 -30.351816 -27.693424
A 7 8 -29.786176 -27.345828 -27.973844 -30.458468 -27.716698
A 7 9 -29.811094 -27.376755 -27.974832 -30.554153 -27.746247
A 7 10 -30.656944 -29.947804 -27.985743 -31.834146 -28.463558
A 8 6 -3.187006 -23.067095 -31.353804 -28.752841 -27.70881
A 8 7 -13.105512 -23.294872 -31.387973 -28.847143 -27.794294
A 8 8 -20.374269 -23.757603 -31.408582 -28.99429 -27.844671
A 8 9 -22.457411 -24.652402 -31.452689 -29.198772 -27.937523
A 8 10 -25.393834 -24.945233 -31.467282 -29.897741 -27.976135
A 8 6 -26.018754 -25.151915 -31.486472 -30.007544 -28.0406
A 8 7 -26.278669 -25.380616 -31.490278 -30.066872 -28.091857
A 8 8 -26.68531 -25.566187 -31.494151 -30.118277 -28.117874
A 8 9 -26.816202 -25.742466 -31.510526 -30.160348 -28.168257
A 8 10 -27.040877 -25.850273 -31.520081 -30.241251 -28.232768
A 8 6 -27.117978 -25.922488 -31.535469 -30.394412 -28.730294
A 8 7 -27.198792 -25.974682 -31.540702 -30.473554 -28.80151
A 8 8 -27.292018 -26.015022 -31.545872 -30.554933 -28.872024
A 8 9 -27.367124 -26.082664 -31.559477 -30.582657 -28.935165
A 8 10 -27.831352 -26.598016 -33.191229 -31.141103 -30.59044
A 9 6 -28.529356 -27.789909 -22.333956 -27.720581 -28.537503
A 9 7 -28.540691 -28.191919 -23.811184 -27.770346 -28.570848
A 9 8 -28.5569 -29.779867 -24.527085 -27.819714 -28.743681
A 9 9 -28.565496 -30.731539 -24.993939 -27.83995 -29.607881
A 9 10 -28.577562 -31.096017 -25.149024 -27.860377 -29.698347
A 9 6 -28.586399 -31.352341 -25.195396 -27.878952 -29.83105
A 9 7 -28.600188 -31.452045 -25.253203 -27.927564 -29.937396
A 9 8 -28.605769 -31.56236 -25.337427 -27.940553 -29.961474
A 9 9 -28.618286 -31.737161 -25.383813 -27.957921 -30.021398
A 9 10 -28.6247 -31.859242 -25.428261 -27.976722 -30.063744
A 9 6 -28.635353 -31.897216 -25.451627 -27.99271 -30.104804
A 9 7 -28.679264 -31.985131 -25.636005 -28.00372 -30.203275
A 9 8 -28.698018 -32.089786 -25.689905 -28.030261 -30.244135
A 9 9 -28.718824 -32.390163 -25.722414 -28.040802 -30.274862
A 9 10 -29.046477 -34.113693 -27.451837 -29.905367 -30.876003
A 10 6 -27.146776 -27.174139 -26.373158 -28.718501 -26.371948
A 10 7 -27.397523 -27.197578 -26.416674 -28.862021 -26.377004
A 10 8 -27.471102 -27.213815 -26.456726 -28.950068 -26.398372
A 10 9 -27.610065 -27.239311 -26.483824 -29.032143 -26.893681
A 10 10 -27.745492 -27.2592 -26.505667 -29.094624 -27.675271
A 10 6 -28.015673 -27.274407 -26.517281 -29.139516 -28.694252
A 10 7 -28.084082 -27.282469 -26.537375 -29.175454 -29.660263
A 10 8 -28.130935 -27.295362 -26.549349 -29.205994 -29.996044
A 10 9 -28.273779 -27.312706 -26.565913 -29.225646 -30.232116
A 10 10 -28.386679 -27.325889 -26.579933 -29.288731 -30.518
A 10 6 -28.468874 -27.354299 -26.588499 -29.341649 -30.624207
A 10 7 -28.56598 -27.378948 -26.593336 -29.379428 -30.746158
A 10 8 -28.616878 -27.388348 -26.603891 -29.502677 -30.777375
A 10 9 -28.69106 -27.399102 -26.801087 -29.674032 -30.836572
A 10 10 -29.392082 -30.466633 -27.321161 -30.46088 -31.545856
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Appendix M. Farming Model Experiment Graphs and Table

Table M.1 Computer Systems
# of Computers Processor Operating System

8 1.7GHz P-IV Linux V7.1
2 1.2 GHz P-III Linux V7.1
5 1.0 GHz P-III Linux V6.2
2 933MHz Linux V6.2
4 450MHz Linux V6.2

Fitness (1 Alg Multiple levels of Farms)

-140

-135

-130

-125

-120

-115

-110

18
6

28
1

38
3

49
4

60
7

69
5

79
0

89
3

10
04

11
17

12
05

13
00

14
03

15
13

16
84

Time (sec)

F
it

n
es

s 
(k

ca
l/m

o
l)

1Alg0Farms
1Alg2Farms
1Alg4Farms
1Alg8Farms

M-1



Fitness (2 Alg Multiple levels of Farms)
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Appendix N. Atom and Amino Acid Identification
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Figure N.1 MET’s Amino Acid and Atom number identification figure.
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Figure N.2 PLOY’s Amino Acid and Atom number identification figure.

N-2



Bibliography

[1] Al-Attar, Akeel A. “A Hybrid GA-Heuristic Search Strategy,” AI EXPERT
USA (SEPTEMBER 1994). Miller Freeman.

[2] Allinger, N. L. Journal of American Chemistry Society , 81 :5727 (1959).
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